Mary A. Rowe

Learn More
Q. A. Turchette,† D. Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80303 (February 22, 2000) We have investigated motional heating of laser-cooled 9Be+ ions held in(More)
We demonstrate a decoherence-free quantum memory of one qubit. By encoding the qubit into the decoherence-free subspace (DFS) of a pair of trapped 9Be+ ions, we protect the qubit from environment-induced dephasing that limits the storage time of a qubit composed of a single ion. We measured the storage time under ambient conditions and under interaction(More)
Local realism is the idea that objects have definite properties whether or not they are measured, and that measurements of these properties are not affected by events taking place sufficiently far away. Einstein, Podolsky and Rosen used these reasonable assumptions to conclude that quantum mechanics is incomplete. Starting in 1965, Bell and others(More)
We experimentally investigate three methods, utilizing different atomic observables and entangled states, to increase the sensitivity of rotation angle measurements beyond the "standard quantum limit" for nonentangled states. All methods use a form of quantum mechanical "squeezing." In a system of two entangled trapped (9)Be(+) ions we observe a reduction(More)
Using a single, harmonically trapped 9Be(+) ion, we experimentally demonstrate a technique for generation of arbitrary states of a two-level particle confined by a harmonic potential. Rather than engineering a single Hamiltonian that evolves the system to a desired final state, we implement a technique that applies a sequence of simple operations to(More)
We report the experimental demonstration of a controlled-NOT (CNOT) quantum logic gate between motional and internal-state qubits of a single ion where, as opposed to previously demonstrated gates, the conditional dynamics depends on the extent of the ion's wave packet. Advantages of this CNOT gate over one demonstrated previously are its immunity from(More)
We show how an experimentally realized set of operations on a single trapped ion is sufficient to simulate a wide class of Hamiltonians of a spin-1/2 particle in an external potential. This system is also able to simulate other physical dynamics. As a demonstration, we simulate the action of two nth order nonlinear optical beam splitters comprising an(More)
D. Kielpinski, A. Ben-Kish, J. Britton, V. Meyer, M.A. Rowe, C.A. Sackett, W.M. Itano, C. Monroe, and D.J. Wineland Time and Frequency Division, National Institute of Standards and Technology, Mailstop 847, 325 Broadway, Boulder CO 80303, USA E-mail: davidk@boulder.nist.gov 1 Department of Physics, University of Virginia, Charlottesville VA 22904, USA 2(More)
We present a wavelength calibration reference based on interleaved, sampled fiber Bragg gratings stabilized to a molecular absorption line. Such a hybrid reference can provide multiple stable calibration peaks over a wide range of wavelengths. We demonstrate a wavelength reference that has at least 20 peaks suitable for use as calibration references in each(More)