Martyn G Boutelle

Learn More
Electrocorticographic (ECoG) activity was recorded for up to 129 h from 12 acutely brain-injured human patients using six platinum electrodes placed near foci of damaged cortical tissue. The method probes ECoG activity in the immediate vicinity of the injured cortex and in adjacent supposedly healthy tissue. Six out of twelve patients displayed a total of(More)
BACKGROUND AND PURPOSE Cortical spreading depression (CSD) has been much studied experimentally but never demonstrated unequivocally in human neocortex by direct electrophysiological recording. A similar phenomenon, peri-infarct depolarization, occurs in experimental models of stroke and causes the infarct to enlarge. Our current understanding of the(More)
Neuronal activity is tightly coupled with brain energy metabolism. Numerous studies have suggested that lactate is equally important as an energy substrate for neurons as glucose. Lactate production is reportedly triggered by glutamate uptake, and independent of glutamate receptor activation. Here we show that climbing fibre stimulation of cerebellar(More)
OBJECTIVE To test the co-occurrence and interrelation of ictal activity and cortical spreading depressions (CSDs) - including the related periinfarct depolarisations in acute brain injury caused by trauma, and spontaneous subarachnoid and/or intracerebral haemorrhage. METHODS 63 patients underwent craniotomy and electrocorticographic (ECoG) recordings(More)
Laser speckle imaging of the exposed cerebral cortex allows detailed examination of the time course and topography of perfusion under different experimental conditions. Here we examine the quantitative capacity of the method and its sensitivity for the detection of peri-infarct depolarisations (PIDs). In four cats anaesthetised with chloralose, the right(More)
Peri-infarct depolarisations (PIDs) contribute to infarct expansion in experimental focal ischaemia; furthermore, depolarisations propagate in the injured human brain. Glucose utilisation is increased under both conditions, and depletion of brain glucose carries a poor prognosis. We studied dynamics of cerebral glucose and lactate in relation to PID(More)
OBJECTIVE To introduce rapid-sampling microdialysis for the early detection of adverse metabolic changes in tissue at risk during aneurysm surgery. METHODS A microdialysis catheter was inserted under direct vision into at-risk cortex at the start of surgery. This monitoring was sustained throughout the course of the operation, during which intraoperative(More)
A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central(More)
Microdialysis enables the chemistry of the extracellular interstitial space to be monitored. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004, a consensus document on the clinical application of cerebral microdialysis was published. Since then,(More)
Rapid sampling microdialysis (rsMD) directed towards the cerebral cortex has allowed identification of a combined time-series signature for glucose and lactate that characterizes peri-infarct depolarization in experimental focal ischaemia, but no comparable data exist for 'classical' cortical spreading depression (CSD) associated with hyperaemia in the(More)