Martine Cattarelli

Learn More
By using retrograde and anterograde transport of the B subunit of cholera toxin (CTb), we examined quantitatively the association fiber systems, i.e., the collaterals of pyramidal cell axons, that reciprocally connect both the rostral and the caudal parts of the piriform cortex (PC). Well-defined CTb injections were obtained in layers Ib or II-III of the(More)
The piriform cortex (PCx) has a potential role in storage and recall of olfactory information. This study is a first extensive investigation of the spatiotemporal distribution of activity in the PCx induced by learned sensory inputs following conditioning. In a conditioned group, rats chronically implanted with four electrodes in the olfactory bulb were(More)
Optical signals were recorded in the in vivo rat piriform cortex (PC) in response to olfactory bulb (OB) electrical stimulations delivered at 4 different sites. Afferent activity had a relatively wide (26.6% of the recorded area) but nonhomogeneous distribution on the PC surface. The different patterns of afferent activity observed in response to the 4 OB(More)
The comparison of optical recordings and evoked field potentials recorded on the rat piriform cortex pointed out that both signals were strongly correlated. As the field potentials, the two waves of the optical signals originated from the mono- (direct olfactory bulb afferents) and polysynaptic (intrinsic association fibers) excitatory postsynaptic(More)
In the present study, the reciprocal connections between the piriform cortex and the prefrontal areas are described on the basis of experiments using the anterograde and the retrograde transport of the cholera toxin B subunit (CTb). Following CTb injections placed in the anterior part of the piriform cortex, retrogradely labeled cells and anterogradely(More)
Retrograde axonal transport of the cholera toxin B subunit (CTb) was combined with 5-HT immunohistochemistry to determine the origin of the serotonergic innervation of the piriform cortex (PC) in the rat. After iontophoretic CTb injections in the PC, a substantial number of retrogradely labeled cells were found in the middle and medio-ventral part of the(More)
When an odor is paired with a delayed illness, rats acquire a relatively weak odor aversion. In contrast, rats develop a strong aversion to an olfactory cue paired with delayed illness if it is presented simultaneously with a gustatory cue. Such a conditioning effect has been referred to as taste-potentiated odor aversion learning (TPOA). TPOA is an(More)
We present a mathematical analysis of the piriform cortex activity in rats. Experimental data were obtained by means of optical recording of fluorescent signals driven by neuronal activity. From these data, we determined the numerical value of the relaxation time for the pyramidal cell activity in layers II and III and the time latency map for bulb(More)
The piriform cortex (PCx), the main area of the primary olfactory cortex, is assumed to play a role in olfactory memory. Involvement of this paleocortex in mnesic processes was investigated by using Fos immunocytochemistry after acquisition of a two-odor discrimination task. Trained rats had to associate one odor of a pair with water reward while(More)
When simultaneous presentation of odor and taste cues precedes illness, rats acquire robust aversion to both conditioned stimuli. Such a phenomenon referred to as taste-potentiated odor aversion (TPOA) requires information processing from two sensory modalities. Whether similar or different brain networks are activated when TPOA memory is retrieved by(More)