Learn More
The first function of the skin is to serve as a protective barrier against the environment. Its loss of integrity as a result of injury or illness may lead to a major disability and the first goal of healing is wound closure involving many biological processes for repair and tissue regeneration. In vivo wound healing has four phases, one of them being the(More)
A common mechanism for intracellular transport is the use of controlled deformations of the membrane to create spherical or tubular buds. While the basic physical properties of homogeneous membranes are relatively well known, the effects of inhomogeneities within membranes are very much an active field of study. Membrane domains enriched in certain lipids,(More)
We present a model of bi-phasic vesicles in the limit of large surface tension. In this regime, the vesicle is completely stretched and well described by two spherical caps with a fold, which concentrates the membrane stress. The conservation laws and geometric constraints restrict the space of possible shapes to a pair of solutions labeled by a parameter(More)
We investigate the morphology of thin discs and rings growing in the circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (e cones). We study the stability of such solutions considering self-contact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond(More)
Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular(More)
Development of forms in living organisms is complex and fascinating. Morphogenetic theories that investigate these shapes range from discrete to continuous models, from the variational elasticity to time-dependent fluid approach. Here a mixture model is chosen to describe the mass transport in a morphogenetic gradient: it gives a mathematical description of(More)
Biological soft tissues exhibit elastic properties which can be dramatically different from rubber-type materials (elastomers). To gain a better understanding of the role of constitutive relationships in determining material responses under loads we compare three different types of instabilities (two in compression, one in extension) in hyper-elasticity for(More)
The symmetry breaking of the actin network from radial to longitudinal symmetry has been identified as the major mechanism for keratocytes (fish cells) motility on solid substrate. For strong friction coefficient, the two dimensional actin flow which includes the polymerisation at the edge and depolymeri-sation in the bulk can be modelled as a Darcy flow,(More)