Learn More
In multicellular organisms from Caenorhabditis elegans to Homo sapiens, the maintenance of homeostasis is dependent on the continual flow and processing of information through a complex network of cells. Moreover, in order for the organism to respond to an ever-changing environment, intercellular signals must be transduced, amplified, and ultimately(More)
SEC2 is an essential gene required for polarized growth of the yeast Saccharomyces cerevisiae. It encodes a protein of 759 amino acids that functions as a guanine nucleotide exchange factor for the small GTPase Sec4p, a regulator of Golgi to plasma membrane transport. Activation of Sec4p by Sec2p is needed for polarized transport of vesicles to exocytic(More)
Regulator of G protein signaling (RGS) proteins negatively regulate receptor-mediated second messenger responses by enhancing the GTPase activity of Galpha subunits. We describe a receptor-specific role for an RGS protein at the level of an individual brain neuron. RGS9-2 and Gbeta(5) mRNA and protein complexes were detected in striatal cholinergic and(More)
Rab GTPases, the largest subgroup in the superfamily of Ras-like GTPases, play regulatory roles in multiple steps of intracellular vesicle trafficking. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the interconversion of the GDP-bound, or inactive, form of Rab to the GTP-bound, or active, form. Relatively little is known(More)
Activation of the rab GTPase, Sec4p, by its exchange factor, Sec2p, is needed for polarized transport of secretory vesicles to exocytic sites and for exocytosis. A small region in the C-terminal half of Sec2p regulates its localization. Loss of this region results in temperature-sensitive growth and the depolarized accumulation of secretory vesicles. Here,(More)
Sec2p is the guanine nucleotide exchange factor (GEF) that activates the Rab GTPase Sec4p on secretory vesicles. Sec2p also binds a Rab acting earlier in the secretory pathway, Ypt32-GTP, forming a Rab GEF cascade. Ypt32p and the Sec4p effector Sec15p (a component of the exocyst complex) compete for binding to Sec2p. Indeed Ypt32p initially recruits Sec2p,(More)
Sec2p is the exchange factor that activates Sec4p, the Rab GTPase controlling the final stage of the yeast exocytic pathway. Sec2p is recruited to secretory vesicles by Ypt32-GTP, a Rab controlling exit from the Golgi. Sec15p, a subunit of the octameric exocyst tethering complex and an effector of Sec4p, binds to Sec2p on secretory vesicles, displacing(More)
The C2 domains of conventional protein kinase C (PKC) have been implicated in their Ca2+-dependent membrane binding. The C2 domain of PKC-alpha contains several Ca2+ ligands that bind multiple Ca2+ ions and other putative membrane binding residues. To understand the roles of individual Ca2+ ligands and protein-bound Ca2+ ions in the membrane binding and(More)
The regulatory domain of conventional protein kinase C (PKC) contains two membrane-targeting modules, the C2 domain that is responsible for Ca2+-dependent membrane binding of protein, and the C1 domain composed of two cysteine-rich zinc fingers (C1a and C1b) that bind diacylglycerols and phorbol esters. To understand the individual roles and the interplay(More)
Two novel protein kinases C (PKC), PKCdelta and PKCepsilon, have been reported to have opposing functions in some mammalian cells. To understand the basis of their distinct cellular functions and regulation, we investigated the mechanism of in vitro and cellular sn-1,2-diacylglycerol (DAG)-mediated membrane binding of PKCepsilon and compared it with that of(More)