Martina M. Geelhoed-Mieras

Learn More
The influenza A virus nucleoprotein (NP) and matrix protein are major targets for human virus-specific cytotoxic T-lymphocyte (CTL) responses. Most of the CTL epitopes that have been identified so far are conserved. However, sequence variation in CTL epitopes of the NP has recently been demonstrated to be associated with escape from virus-specific CTLs. To(More)
Annual vaccination against seasonal influenza viruses is recommended for certain individuals that have a high risk for complications resulting from infection with these viruses. Recently it was recommended in a number of countries including the USA to vaccinate all healthy children between 6 and 59 months of age as well. However, vaccination of(More)
A candidate influenza H5N1 vaccine based on cell-culture-derived whole inactivated virus and the novel adjuvant CoVaccineHT was evaluated in vitro and in vivo. To this end, mice were vaccinated with the whole inactivated influenza A/H5N1 virus vaccine with and without CoVaccineHT and virus-specific antibody and cellular immune responses were assessed. The(More)
Highly pathogenic avian influenza A viruses of the H5N1 subtype continue to circulate in poultry, and zoonotic transmissions are reported frequently. Since a pandemic caused by these highly pathogenic viruses is still feared, there is interest in the development of influenza A/H5N1 virus vaccines that can protect humans against infection, preferably after a(More)
In the present study, we examined the effect of the loss of the human leucocyte antigen (HLA)-B*3501-restricted nucleoprotein (NP)(418-426) epitope on interferon (IFN)-gamma-production and lytic activity of the human cytotoxic T lymphocyte (CTL) response in vitro. Extensive amino acid variation at T cell receptor contact residues of the NP(418-426) epitope(More)
Infection with seasonal influenza viruses induces a certain extent of protective immunity against potentially pandemic viruses of novel subtypes, also known as heterosubtypic immunity. Here we demonstrate that infection with a recent influenza A/H3N2 virus strain induces robust protection in ferrets against infection with a highly pathogenic avian influenza(More)
Influenza A (H1N1) viruses of swine origin were introduced into the human population in 2009 and caused a pandemic. The disease burden in the elderly was relatively low, which was attributed to the presence of cross-reacting serum antibodies in this age group, which were raised against seasonal influenza A (H1N1) viruses that circulated before 1957. It has(More)
Influenza A viruses cause annual epidemics and occasionally pandemics. Antibodies directed to the conserved viral nucleoprotein (NP) may play a role in immunity against various influenza A virus subtypes. Here, we assessed the immunological significance of a human monoclonal antibody directed to NP in vitro. This antibody bound to virus-infected cells but(More)
Influenza virus-specific CD4+ T-helper cells were cloned that recognized a virus strain isolated in 1981, but that failed to recognize more recent strains. The HLA-DR*1601-restricted epitope recognized was located in the hemagglutinin (HA(99-113)) and the naturally occurring A-->V substitution at position 106 was responsible for abrogating the recognition(More)
In February 2013, zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at present no sustained human-to-human transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the(More)