Martina Möller

Learn More
Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is(More)
Heterotrimeric G-proteins interact with their G-protein-coupled receptors (GPCRs) via key binding elements comprising the receptor-specific C-terminal segment of the alpha-subunit and the lipid anchors at the alpha-subunit N-terminus and the gamma-subunit C-terminus. Direct information about diffusion and interaction of GPCRs and their G-proteins is(More)
The aminergic alpha(2b)-adrenergic receptor (alpha(2b)-AR) third intracellular loop (alpha(2b)-AR 3i) mediates receptor subcellular compartmentalization and signal transduction processes via ligand-dependent interaction with G(i)- and G(o)- proteins. To understand the structural origins of these processes we engineered several lengths of alpha(2b)-AR 3i(More)
UNLABELLED Abstract The mouse neuroblastoma cell line is an excellent model in which to study thyroid hormone action and metabolism, particularly in neural tissue. We therefore undertook the molecular cloning and characterization in these cells of putative thyroid hormone receptors related to c-erb-A. Since rat brain tissue contains multiple cell types, and(More)
  • 1