Martina Möller

Learn More
Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is(More)
Little is known about the molecular nature of residual structure in unfolded states of membrane proteins. A screen of chemical denaturants to maximally unfold the mammalian membrane protein and prototypic G protein coupled receptor rhodopsin, without interference from aggregation, described in an accompanying paper (DOI 10.1021/bi100338e ), identified(More)
The physico-chemical properties as well as the conformation of the cytoplasmic surface of the 7-helix retinal proteins bacteriorhodopsin (bR) and visual rhodopsin change upon light activation. A recent study found evidence for a transient softening of bR in its key intermediate M [Pieper et al. (2008) Phys. Rev. Lett. 100, 228103] as a direct proof for the(More)
Heterotrimeric G-proteins interact with their G-protein-coupled receptors (GPCRs) via key binding elements comprising the receptor-specific C-terminal segment of the alpha-subunit and the lipid anchors at the alpha-subunit N-terminus and the gamma-subunit C-terminus. Direct information about diffusion and interaction of GPCRs and their G-proteins is(More)
The cytoplasmic surface of G protein-coupled receptors plays a central role for activation and deactivation of the receptor. To understand the molecular mechanisms which underlie these processes, we determined the surface charge density and its changes upon activation directly at the cytoplasmic surface of bovine rhodopsin and correlated these changes with(More)
The aminergic alpha(2b)-adrenergic receptor (alpha(2b)-AR) third intracellular loop (alpha(2b)-AR 3i) mediates receptor subcellular compartmentalization and signal transduction processes via ligand-dependent interaction with G(i)- and G(o)- proteins. To understand the structural origins of these processes we engineered several lengths of alpha(2b)-AR 3i(More)
  • 1