Martina Lorenz

Learn More
Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include(More)
Low-area density ZnO nanowire arrays, growing perpendicularly to the substrate, are synthesized with high-pressure pulsed laser deposition. The introduction of a ZnO buffer layer enables us to fabricate individual nanowires several micrometres apart (area density<0.1 nanowire microm(-2)), suppressing any shadowing effect by neighbouring nanowires during(More)
Epitaxial magnetite thin films with (loo), (1 10) and (1 11) orientation have been deposited by Laser ablation onto substrates with [NaCI] and [Spinel] strudure. X-ray dif£raction revealed pseudomorphic growth for (100) and (11 1) oriented films on MgO (100) and ZnFe,04 (1 11) respectively, whereas films on M&04 showed a high degree of relaxation For films(More)
Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI)(More)
MgZnO/ZnO quantum wells on top of ZnO nanowires were grown by pulsed laser deposition. Ensembles of spatially fluctuating and narrow cathodoluminescence peaks with single widths down to 1 meV were found at the spectral position of the quantum well emission at 4 K. In addition, the number of these narrow QW peaks increases with increasing excitation power in(More)
We investigated properties of an (In(x)Ga(1-x))2O3 thin film with laterally varying cation composition that was realized by a large-area offset pulsed laser deposition approach. Within a two inch diameter thin film, the composition varies between 0.01 ≤ x ≤ 0.85, and three crystallographic phases (cubic, hexagonal, and monoclinic) were identified. We(More)
  • 1