Learn More
Thiol/disulfide oxidoreductases like thioredoxin, glutaredoxin, DsbA, or protein disulfide isomerase (PDI) share the thioredoxin fold and a catalytic disulfide bond with the sequence Cys-Xaa-Xaa-Cys (Xaa corresponds to any amino acid). Despite their structural similarities, the enzymes have very different redox properties, which is reflected by a(More)
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys30-Pro31-His32-Cys33). Unlike(More)
The thiol/disulfide oxidoreductase DsbA is the strongest oxidant of the thioredoxin superfamily and is required for efficient disulfide bond formation in the periplasm of Escherichia coli. To determine the importance of the redox potential of the final oxidant in periplasmic protein folding, we have investigated the ability of the most reducing(More)
The bifunctional inhibitor from Ragi (Eleusine coracana Gaertneri) (RBI) is the only member of the alpha-amylase/trypsin inhibitor family that inhibits both trypsin and alpha-amylase. Here, we show that both enzymes simultaneously and independently bind to RBI. The recently solved three-dimensional NMR structure of RBI has revealed that the inhibitor(More)
BACKGROUND Disulfide exchange reactions are catalyzed by thiol/disulfide oxidoreductases. These enzymes possess a thioredoxin fold and contain a catalytic disulfide with the sequence Cys-X-X-Cys at the N terminus of an alpha helix. Despite these similarities, the various members differ strongly in their redox potentials (-122 mV to -270 mV). Using the(More)
A new member of membrane-anchored periplasmic thioredoxin-like proteins was identified in Bradyrhizobium japonicum. It is the product of cycY, the last gene in a cluster of cytochrome c biogenesis genes. Mutational analysis revealed that cycY is essential for the biosynthesis of all c-type cytochromes in this bacterium. The CycY protein was shown to be(More)
The disulfide oxidoreductase DsbA is a strong oxidant of protein thiols and required for efficient disulfide bond formation in the bacterial periplasm. The enzyme consists of a thioredoxin-like domain and a second, alpha-helical domain which is inserted into the thioredoxin motif. Reduction of the active-site disulfide in the thioredoxin domain causes a(More)
Oxidative protein folding in the periplasm of Escherichia coli is catalyzed by the thiol-disulfide oxidoreductases DsbA and DsbC. We investigated the catalytic efficiency of these enzymes during folding of proteins with a very complex disulfide pattern in vivo and in vitro, using the Ragi bifunctional inhibitor (RBI) as model substrate. RBI is a 13.1 kDa(More)
The three-dimensional structure of reduced DsbA from Escherichia coli in aqueous solution has been determined by nuclear magnetic resonance (NMR) spectroscopy and is compared with the crystal structure of oxidized DsbA [Guddat, L. W., Bardwell, J. C. A., Zander, T., and Martin, J. L. (1997) Protein Sci. 6, 1148-1156]. DsbA is a monomeric 21 kDa protein(More)
The thioredoxin superfamily consists of enzymes that catalyze the reduction, formation, and isomerization of disulfide bonds and exert their activity through a redox active disulfide in a Cys-Xaa(1)-Xaa(2)-Cys motif. The individual members of the family differ strongly in their intrinsic redox potentials. However, the role of the different redox potentials(More)