Learn More
BACKGROUND Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst(More)
We report for the first time the functional simultaneous expression of nine genes from a single 2A peptide based polycistronic expression construct. The feasibility and arising opportunities for the biosynthetic pathway balancing for chemical production were demonstrated by the co-expression of the violacein and carotenoid biosynthesis pathways.
Mutational events as well as the selection of the optimal variant are essential steps in the evolution of living organisms. The same principle is used in laboratory to extend the natural biodiversity to obtain better catalysts for applications in biomanufacturing or for improved biopharmaceuticals. Furthermore, single mutation in genes of drug-metabolizing(More)
BACKGROUND Getting access to authentic human drug metabolites is an important issue during the drug discovery and development process. Employing recombinant microorganisms as whole-cell biocatalysts constitutes an elegant alternative to organic synthesis to produce these compounds. The present work aimed for the generation of an efficient whole-cell(More)
Many synthetically useful reactions are catalyzed by cofactor-dependent enzymes. As cofactors represent a major cost factor, methods for efficient cofactor regeneration are required especially for large-scale synthetic applications. In order to generate a novel and efficient host chassis for bioreductions, we engineered the methanol utilization pathway of(More)
  • 1