Learn More
Transient receptor potential (TRP) cation channels are renowned for their ability to sense diverse chemical stimuli. Still, for many members of this large and heterogeneous protein family it is unclear how their activity is regulated and whether they are influenced by endogenous substances. On the other hand, steroidal compounds are increasingly recognized(More)
Insulin secretion in normal B-cells is pulsatile, a consequence of oscillations in the cell membrane potential (MP) and cytosolic calcium activity ([Ca(2+)](c)). We simultaneously monitored glucose-induced changes in [Ca(2+)](c) and in the mitochondrial membrane potential DeltaPsi, as a measure for ATP generation. Increasing the glucose concentration from(More)
Glucocorticoid excess induces hyperglycemia, which may result in diabetes. The present experiments explored whether glucocorticoids trigger apoptosis in insulin-secreting cells. Treatment of mouse beta-cells or INS-1 cells with the glucocorticoid dexamethasone (0.1 micromol/l) over 4 days in cell culture increased the number of fractionated nuclei from 2 to(More)
OBJECTIVE Ca(2+)-regulated K(+) channels are involved in numerous Ca(2+)-dependent signaling pathways. In this study, we investigated whether the Ca(2+)-activated K(+) channel of intermediate conductance SK4 (KCa3.1, IK1) plays a physiological role in pancreatic beta-cell function. RESEARCH DESIGN AND METHODS Glucose tolerance and insulin sensitivity were(More)
AIMS/HYPOTHESIS Evidence is accumulating that Ca(2+)-regulated K(+) (K(Ca)) channels are important for beta cell function. We used BK channel knockout (BK-KO) mice to examine the role of these K(Ca) channels for glucose homeostasis, beta cell function and viability. METHODS Glucose and insulin tolerance were tested with male wild-type and BK-KO mice. BK(More)
The sulfonylurea receptors (SURs) ABCC8/SUR1 and ABCC9/SUR2 are members of the C-branch of the transport adenosine triphosphatase superfamily. Unlike their brethren, the SURs have no identified transport function; instead, evolution has matched these molecules with K(+) selective pores, either K(IR)6.1/KCNJ8 or K(IR)6.2/KCNJ11, to assemble adenosine(More)
AIMS/HYPOTHESIS SUR1(ABCC8)(-/-) mice lacking functional K(ATP) channels are an appropriate model to test the significance of K(ATP) channels in beta-cell function. We examined how this gene deletion interferes with stimulus-secretion coupling. We tested the influence of metabolic inhibition and galanin, whose mode of action is controversial. METHODS(More)
Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V(m)) are regulated by metabolism-dependent alterations in ion channel activity. This coupling is best explored in beta-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the(More)
Diabetes mellitus type 1 and 2 (T1DM and T2DM) are complex multifactorial diseases. Loss of beta-cell function caused by reduced secretory capacity and enhanced apoptosis is a key event in the pathogenesis of both diabetes types. Oxidative stress induced by reactive oxygen and nitrogen species is critically involved in the impairment of beta-cell function(More)
The enhanced oxidative stress associated with type 2 diabetes mellitus contributes to disease pathogenesis. We previously identified plasma membrane-associated ATP-sensitive K+ (KATP) channels of pancreatic beta cells as targets for oxidants. Here, we examined the effects of genetic and pharmacologic ablation of KATP channels on loss of mouse beta cell(More)