Martina Campanella

Learn More
At present, functional magnetic resonance imaging (fMRI) is one of the most useful methods of studying cognitive processes in the human brain in vivo, both for basic science and clinical goals. Although neuroscience studies often rely on group analysis, clinical applications must investigate single subjects (patients) only. Particularly for the latter,(More)
Limb immobilization and nonuse are well-known causes of corticomotor depression. While physical training can drive the recovery from nonuse-dependent corticomotor effects, it remains unclear if it is possible to gain access to motor cortex in alternative ways, such as through motor imagery (MI) or action observation (AO). Transcranial magnetic stimulation(More)
The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor(More)
Recent data show a broad correspondence between human resting-state and task-related brain networks. We performed a functional magnetic resonance imaging (fMRI) study to compare, in the same subjects, the spatial independent component analysis (ICA) maps obtained at rest and during the observation of either reaching/grasping hand actions or matching static(More)
Conventional structural Magnetic Resonance (MR) techniques can accurately identify brain tumors but do not provide exhaustive information about the integrity of the surrounding/embedded white matter (WM). In this study, we used Diffusion-Weighted (DW) MRI tractography to explore tumor-induced alterations of WM architecture without any a priori knowledge(More)
The study of anatomical connectivity is essential for interpreting functional MRI data and for establishing how brain areas are linked together into networks to support higher-order functions. Diffusion-weighted MR images (DWI) and tractography provide a unique noninvasive tool to explore the connectional architecture of the brain. The identification of(More)
BACKGROUND The renal proximal tubule (PT) is clinically vulnerable to mitochondrial dysfunction; sub-lethal injury can lead to the Fanconi syndrome, with elevated urinary excretion of low-molecular-weight proteins. As the mechanism that couples mitochondrial dysfunction to impaired PT low-molecular weight protein uptake is unknown, we investigated the(More)
  • 1