Martina Baliova

Learn More
It has been shown recently that the N-terminal domain of the dopamine transporter (DAT) plays a role in several transporter functions. Here we provide evidence for a possible cellular mechanism of how the N-terminus of dopamine transporter might be removed in vivo. We isolated a recombinant N-terminal protein region of human dopamine transporter and cleaved(More)
Glycine transporters are members of the Na+/Cl- dependent transporter gene family and play crucial roles in regulating inhibitory as well as excitatory neurotransmission. In this report we show that calcium elevation in spinal cord synaptosomes decreases the levels of glycine transporter, GlyT1, N-terminal immunoreactivity, and that this decrease can be(More)
Glycine transporter GlyT1 plays important role in maintaining accurate glycine concentration in local brain microenvironment. Transporting efficiency of GlyT1 is strongly affected by the state of its distal C-terminus, which regulates transporter trafficking and cellular surface density. Using selected range of antibody epitopes against C-terminal region of(More)
Cytosolic regions of sodium dependent neurotransmitter transporters regulate their surface density and transporting function by interconnecting themselves with intracellular signaling pathways. Here we show that calpain activation in rat brain synaptosomes leads to cleavage of both N- and C-terminal regions of GABA transporter GAT1. In the C-terminal(More)
The glycine transporter 2 (GlyT2) belongs to the family of Na+/CL--dependent plasma membrane transporters and is localized on the presynaptic terminals of glycinergic neurons. GlyT2 differs from other family members by its extended N-terminal cytoplasmic region. We report that activation of a Ca2+-dependent protease, most likely calpain, in spinal cord(More)
Previously, we found that the C-terminus of the glycine transporter GlyT1 loses the most of its epitopes during pathological calcium increase in rodent synaptosomes but that the more internal epitopes are spared. We also found that epitope immunoreactivity likely decreases via both phosphorylation and calpain-mediated proteolysis. Here we show that the(More)
The cytoplasmic regions of neurotransmitter transporters play an important role in their trafficking. This process is, to a high extent, tuned by calcium and calcium binding proteins, but the exact molecular connection are still not fully understood. In this work we found that the C-terminal region of the mouse glycine transporter GlyT1b is able to(More)
A ubiquitous feature of neurotransmitter transporters is the presence of short C-terminal PDZ binding motifs acting as important trafficking elements. Depending on their very C-terminal sequences, PDZ binding motifs are usually divided into at least three groups; however this classification has recently been questioned. To introduce a 3D aspect into(More)
Glycine transporter inhibitors modulate the transmission of pain signals. Since it is well known that extracts from medicinal plants such as Chelidonium majus exhibit analgesic properties, we investigated the effects of alkaloids typically present in this plant on glycine transporters. We found that chelerythrine and sanguinarine selectively inhibit the(More)
  • 1