Learn More
Biglycan, a small leucine-rich proteoglycan, is a ubiquitous ECM component; however, its biological role has not been elucidated in detail. Here we show that biglycan acts in macrophages as an endogenous ligand of TLR4 and TLR2, which mediate innate immunity, leading to rapid activation of p38, ERK, and NF-kappaB and thereby stimulating the expression of(More)
ANG II AT(1) receptor blockade reduces inflammation in hypertension. To determine whether ANG II AT(1) receptor blockers (ARBs) influence the innate immune inflammatory response in normotensive rats, we studied rat plasma and spleen after a 3-day subcutaneous pretreatment with the ARB candesartan followed by a single dose of the bacterial endotoxin LPS (50(More)
It has been shown recently that the N-terminal domain of the dopamine transporter (DAT) plays a role in several transporter functions. Here we provide evidence for a possible cellular mechanism of how the N-terminus of dopamine transporter might be removed in vivo. We isolated a recombinant N-terminal protein region of human dopamine transporter and cleaved(More)
Decorin, a small leucine-rich proteoglycan, affects the synthesis of the elastic fiber component fibrillin-1 in the kidney via hitherto unknown mechanisms. Here, we show that decorin binds to and induces phosphorylation of insulin-like growth factor-I (IGF-I) receptor in renal fibroblasts. Inhibition of the IGF-I receptor tyrosine kinase and its downstream(More)
Glycine transporters are members of the Na+/Cl- dependent transporter gene family and play crucial roles in regulating inhibitory as well as excitatory neurotransmission. In this report we show that calcium elevation in spinal cord synaptosomes decreases the levels of glycine transporter, GlyT1, N-terminal immunoreactivity, and that this decrease can be(More)
Glycine transporter GlyT2 contains an extended N-terminal domain which is about three times longer than the N-termini of its closest family members. We previously found that this domain could be separated from the transporter by proteolysis with calpain resulting in the generation of at least two GlyT2N derived peptides. In this work we analyzed the(More)
Glycine transporter GlyT1 plays important role in maintaining accurate glycine concentration in local brain microenvironment. Transporting efficiency of GlyT1 is strongly affected by the state of its distal C-terminus, which regulates transporter trafficking and cellular surface density. Using selected range of antibody epitopes against C-terminal region of(More)
The glycine transporter 2 (GlyT2) belongs to the family of Na+/CL--dependent plasma membrane transporters and is localized on the presynaptic terminals of glycinergic neurons. GlyT2 differs from other family members by its extended N-terminal cytoplasmic region. We report that activation of a Ca2+-dependent protease, most likely calpain, in spinal cord(More)
Cytosolic regions of sodium dependent neurotransmitter transporters regulate their surface density and transporting function by interconnecting themselves with intracellular signaling pathways. Here we show that calpain activation in rat brain synaptosomes leads to cleavage of both N- and C-terminal regions of GABA transporter GAT1. In the C-terminal(More)
Calpain activation in spinal cord neurons results in removal of the glycine transporter N-terminal region. In this work we have compared the cleavage patterns of released peptides in presence of both okadaic acid and sodium or-thovanadate. Under basal calcium concentration the calpain cleavage patterns are significantly different for these two phosphatase(More)