Learn More
Inclusive fitness and reciprocal altruism are widely thought to be distinct explanations for how altruism evolves. Here we show that they rely on the same underlying mechanism. We demonstrate this commonality by applying Hamilton's rule, normally associated with inclusive fitness, to two simple models of reciprocal altruism: one, an iterated prisoner's(More)
Physical mapping of BACs by fluorescent in situ hybridization (FISH) was used to analyze the liguleless (lg-1) linkage group in sorghum and compare it to the conserved region in rice and maize. Six liguleless-associated rice restriction fragment length polymorphism (RFLP) markers were used to select 16 homeologous sorghum BACs, which were in turn used to(More)
In situ hybridization (ISH) for the detection of single- or low-copy sequences, particularly large DNA fragments cloned into YAC or BAC vectors, generally requires the suppression or "blocking" of highly-repetitive DNAs. C0t-1 DNA is enriched for repetitive DNA elements, high or moderate in copy number, and can therefore be used more effectively than total(More)
Although the conditions under which altruistic behaviors evolve continue to be vigorously debated, there is general agreement that altruistic traits involving an absolute cost to altruists (strong altruism) cannot evolve when populations are structured with randomly formed groups. This conclusion implies that the evolution of such traits depends upon(More)
Fluorescence in situ hybridization (FISH) of a large-insert genomic clone, BAC 22B2, previously suggested that Sorghum bicolor (2n = 20) has the tetraploid architecture A(b)A(b)B(b)B(b). Here, we report on BAC 22B2 subclone pCEN38 (1047-bp insert) as related to sorghum and sugarcane. Mitotic FISH of six different subclones of BAC 22B2 showed that pCEN38(More)
Very little is known regarding how repetitive elements evolve inpolyploid organisms. Here we address this subject by fluorescent insitu hybridization (FISH) of 20 interspersed repetitive elements tometaphase chromosomes of the cotton AD-genome tetraploid Gossypiumhirsutum and its putative A- and D-genome diploid ancestors. Theseelements collectively(More)
The extensive use of molecular cytogenetics in human genetics and clinical diagnostics indicates that analogous applications in plants are highly feasible. One sort of application would be the identification of new aneuploids, which traditionally involves either direct karyotypic identification, which is feasible in only a few plant species, or tests with(More)
The Medical Quality Improvement Consortium data warehouse contains de-identified data on more than 3.6 million patients including their problem lists, test results, procedures and medication lists. This study uses reconstructability analysis, an information-theoretic data mining technique, on the MQIC data warehouse to empirically identify risk factors for(More)
Retrotransposons constitute a ubiquitous and dynamic component of plant genomes. Intragenomic and intergenomic comparisons of related genomes offer potential insights into retrotransposon behavior and genomic effects. Here, we have used fluorescent in-situ hybridization to determine the chromosomal distributions of a Ty1-copia-like retrotransposon in the(More)