Learn More
  • Carmen M. Koch, Christoph V. Suschek, Qiong Lin, Simone Bork, Maria Goergens, Sylvia Joussen +4 others
  • 2011
Epigenetic modifications of cytosine residues in the DNA play a critical role for cellular differentiation and potentially also for aging. In mesenchymal stromal cells (MSC) from human bone marrow we have previously demonstrated age-associated methylation changes at specific CpG-sites of developmental genes. In continuation of this work, we have now(More)
Human aging is associated with DNA methylation changes at specific sites in the genome. These epigenetic modifications may be used to track donor age for forensic analysis or to estimate biological age. We perform a comprehensive analysis of methylation profiles to narrow down 102 age-related CpG sites in blood. We demonstrate that most of these(More)
The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that(More)
  • Anne Schellenberg, Qiong Lin, Herdit Schüler, Carmen M. Koch, Sylvia Joussen, Bernd Denecke +5 others
  • 2011
Cells in culture undergo replicative senescence. In this study, we analyzed functional, genetic and epigenetic sequels of long-term culture in human mesenchymal stem cells (MSC). Already within early passages the fibroblastoid colony-forming unit (CFU-f) frequency and the differentiation potential of MSC declined significantly. Relevant chromosomal(More)
The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet(More)
  • Franziska Meier-Stiegen, Ralf Schwanbeck, Kristina Bernoth, Simone Martini, Thomas Hieronymus, David Ruau +2 others
  • 2010
BACKGROUND Notch receptor signaling controls developmental cell fates in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the target genes that are directly activated by Notch in the respective tissues. METHODOLOGY/PRINCIPAL FINDINGS To analyze how Notch(More)
  • Clair E. Weidgang, Ronan Russell, Purushothama R. Tata, Susanne J. Kühl, Anett Illing, Martin Müller +17 others
  • 2013
Cell-fate decisions and pluripotency are dependent on networks of key transcriptional regulators. Recent reports demonstrated additional functions of pluripotency-associated factors during early lineage commitment. The T-box transcription factor TBX3 has been implicated in regulating embryonic stem cell self-renewal and cardiogenesis. Here, we show that(More)
Standardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs) assimilate toward a ground state and may therefore give rise to more standardized cell(More)
Hematopoietic stem and progenitor cells (HPCs) can be maintained in vitro, but the vast majority of their progeny loses stemness during culture. In this study, we compared DNA-methylation (DNAm) profiles of freshly isolated and culture-expanded HPCs. Culture conditions of CD34(+) cells - either with or without mesenchymal stromal cells (MSCs) - had(More)
Induced pluripotent stem cells (iPSCs) are usually clonally derived. The selection of fully reprogrammed cells generally involves picking of individual colonies with morphology similar to embryonic stem cells (ESCs). Given that fully reprogrammed cells are highly proliferative and escape from cellular senescence, it is conceivable that they outgrow(More)