Martin Winkler

Learn More
Clostridium acetobutylicum ATCC 824 was selected for the homologous overexpression of its Fe-only hydrogenase and for the heterologous expressions of the Chlamydomonas reinhardtii and Scenedesmus obliquus HydA1 Fe-only hydrogenases. The three Strep tag II-tagged Fe-only hydrogenases were isolated with high specific activities by two-step column(More)
Under anaerobic conditions, several species of green algae perform a light-dependent hydrogen production catalyzed by a special group of [FeFe] hydrogenases termed HydA. Although highly interesting for biotechnological applications, the direct connection between photosynthetic electron transport and hydrogenase activity is still a matter of speculation. By(More)
Green algae are the only known eukaryotes with both oxygenic photosynthesis and a hydrogen metabolism. Recent physiological and genetic discoveries indicate a close connection between these metabolic pathways. The anaerobically inducible hydA genes of algae encode a special type of highly active [Fe]-hydrogenase. Electrons from reducing equivalents(More)
The unicellular green alga Chlamydomonas reinhardtii has at least six plant-type ferredoxins (FDX). Besides the long-known photosynthetic ferredoxin PetF the isoforms Fdx2-Fdx6 have been identified. The FDX genes are differentially expressed under various environmental conditions such as the availability of oxygen, copper, iron and ammonium. Recently, the(More)
[Fe]-hydrogenases are redoxenzymes that catalyze the reversible reduction of protons to hydrogen. Hydrogenase activity was observed in a culture of the unicellular green alga Chlorella fusca after an anaerobic incubation, but not in the related species Chlorella vulgaris. Specific polymerase chain reaction (PCR) techniques lead to the isolation of the cDNA(More)
Using a radioimmunoassay, we have measured the level of calmodulin-dependent phosphatase (calcineurin) in various subcellular fractions from chick forebrain. Our results revealed high levels of the enzyme in the cytoplasm and microsomes. A considerable amount was also observed in synaptosomes, where it was found exclusively in the synaptoplasm, comprising(More)
Hydrogenase expression in Chlamydomonas reinhardtii can be artificially induced by anaerobic adaptation or is naturally established under sulphur deprivation. In comparison to anaerobic adaptation, sulphur-deprived algal cultures show considerably higher expression rates of the [FeFe]-hydrogenase (HydA1) and develop a 25-fold higher in vitro hydrogenase(More)
Hemoglobins are recognized today as a diverse family of proteins present in all kingdoms of life and performing multiple reactions beyond O2 chemistry. The physiological roles of most hemoglobins remain elusive. Here, we show that a 2-on-2 ("truncated") hemoglobin, termed THB8, is required for hypoxic growth and the expression of anaerobic genes in(More)
Irreversible inhibition by molecular oxygen (O(2)) complicates the use of [FeFe]-hydrogenases (HydA) for biotechnological hydrogen (H(2)) production. Modification by O(2) of the active site six-iron complex denoted as the H-cluster ([4Fe4S]-2Fe(H)) of HydA1 from the green alga Chlamydomonas reinhardtii was characterized by x-ray absorption spectroscopy at(More)
Anti-tumor monoclonal antibodies were cross-linked to the anti-CD3 T-cell antibody OKT3 by the use of the heterobifunctional cross-linker succinimidyl-3-(2-pyridyldithio)propionate. Derivatized monoclonal antibodies, heterodimers, and homodimers were resolved by analytical isoelectric focusing in polyacrylamide gels containing 1% Triton X-100. Isoelectric(More)