Martin Wenderoth

Learn More
We investigate the structural, electronic, and transport properties of substitutional defects in SiC-graphene by means of scanning tunneling microscopy and magnetotransport experiments. Using ion incorporation via ultralow energy ion implantation, the influence of different ion species (boron, nitrogen, and carbon) can directly be compared. While boron and(More)
The charge state of individually addressable impurities in semiconductor material was manipulated with a scanning tunneling microscope. The manipulation was fully controlled by the position of the tip and the voltage applied between tip and sample. The experiments were performed at low temperature on the (110) surface of silicon doped GaAs. Silicon donors(More)
If a current of electrons flows through a normal conductor (in contrast to a superconductor), it is impeded by local scattering at defects as well as phonon scattering. Both effects contribute to the voltage drop observed for a macroscopic complex system as described by Ohm's law. Although this concept is well established, it has not yet been measured(More)
The Fermi surface that characterizes the electronic band structure of crystalline solids can be difficult to image experimentally in a way that reveals local variations. We show that Fermi surfaces can be imaged in real space with a low-temperature scanning tunneling microscope when subsurface point scatterers are present: in this case, cobalt impurities(More)
We investigate low temperature grown, abrupt, epitaxial, nonintermixed, defect-free n-type and p-type Fe/GaAs(110) interfaces by cross-sectional scanning tunneling microscopy and spectroscopy with atomic resolution. The probed local density of states shows that a model of the ideal metal-semiconductor interface requires a combination of metal-induced gap(More)
We measured the ionization threshold voltage of individual impurities close to a semiconductor-vacuum interface, where we use the STM tip to ionize individual donors. We observe a reversed order of ionization with depth below the surface, which proves that the binding energy is enhanced towards the surface. This is in contrast to the predicted reduction for(More)
We have developed a new scanning tunneling potentiometry technique which can-with only minor changes of the electronic setup-be easily added to any standard scanning tunneling microscope (STM). This extension can be combined with common STM techniques such as constant current imaging or scanning tunneling spectroscopy. It is capable of performing(More)
In scanning tunneling experiments on semiconductor surfaces, the energy scale within the tunneling junction is usually unknown due to tip-induced band bending. Here, we experimentally recover the zero point of the energy scale by combining scanning tunneling microscopy with Kelvin probe force spectroscopy. With this technique, we revisit shallow acceptors(More)
Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for(More)
Electronic transport on a macroscopic scale is described by spatially averaged electric fields and scattering processes summarized in a reduced electron mobility. That this does not capture electronic transport on the atomic scale was realized by Landauer long ago. Local and non-local scattering processes need to be considered separately, the former leading(More)