Martin W. Lo

Learn More
In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the(More)
There has recently been considerable interest in sending a spacecraft to orbit Europa, the smallest of the four Galilean moons of Jupiter. The trajectory design involved in effecting a capture by Europa presents formidable challenges to traditional conic analysis since the regimes of motion involved depend heavily on three-body dynamics. New three-body(More)
The invariant manifold structures of the collinear libration points for the restricted three-body problem provide the framework for understanding transport phenomena from a geometrical point of view. In particular, the stable and unstable invariant manifold tubes associated with libration point orbits are the phase space conduits transporting material(More)
We combine the techniques of almost invariant sets (using tree structured box elimination and graph partitioning algorithms) with invariant manifold and lobe dynamics techniques. The result is a new computational technique for computing key dynamical features, including almost invariant sets, resonance regions as well as transport rates and bottlenecks(More)
The TPF Mission (Terrestrial Planet Finder) is one of the center pieces of the NASA Origins Program. The goal of TPF is to identify terrestrial planets around stars nearby the Solar System. For this purpose, a space-based infrared interferometer with a baseline of approximately 100 m is required. To achieve such a large baseline, a distributed system of(More)
The title of this paper is inspired by the work of Poincaré [1890, 1892], who introduced many key dynamical systems methods during his research on celestial mechanics and especially the three body problem. Since then, many researchers have contributed to his legacy by developing and applying these methods to problems in celestial mechanics and, more(More)
This paper concerns heteroclinic connections and resonance transitions in the planar circular restricted 3-body problem, with applications to the dynamics of comets and asteroids and the design of space missions such as the Genesis Discovery Mission and low energy Earth to Moon transfers. The existence of a heteroclinic connection between pairs of equal(More)
The purpose of this paper is to describe the general setting for the application of techniques from geometric mechanics and dynamical systems to the problem of asteroid pairs. The paper also gives some preliminary results on transport calculations and the associated problem of calculating binary asteroid escape rates. The dynamics of an asteroid pair,(More)