Learn More
Patients suffering from schizophrenia may report unusual experiences of their own actions. They may either feel that external forces are controlling their actions or even their thoughts, or they may feel in control of events that in fact are not caused by their actions. Most theories link these disturbances in the sense of agency to deficits in motor(More)
Our nervous system continuously combines new information from our senses with information it has acquired throughout life. Numerous studies have found that human subjects manage this by integrating their observations with their previous experience (priors) in a way that is close to the statistical optimum. However, little is known about the way the nervous(More)
BACKGROUND Historically, VHL was the only frequently mutated gene in clear cell renal cell carcinoma (ccRCC), with conflicting clinical relevance. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC including PBRM1, SETD2, BAP1, and KDM5C. PBRM1, SETD2, and BAP1 are located(More)
Transcranial magnetic stimulation (TMS) was used to investigate corticospinal excitability during the preparation period preceding visually guided self-paced grasping. Previously we have shown that while subjects prepare to grasp a visible object, paired-pulse TMS at a specific interval facilitates motor-evoked potentials (MEPs) in hand muscles in a manner(More)
Voluntary actions typically produce suppression of afferent sensation from the moving body part. We used transcranial magnetic stimulation to delay the output of motor commands from the motor cortex during voluntary movement. We show attenuation of sensation during this delay, in the absence of movement. We conclude that sensory suppression mainly relies on(More)
Humans and other primates demonstrate an exquisite ability to precisely shape their hand when reaching out to grasp an object. Here we used a recently developed transcranial magnetic stimulation paradigm to examine how information about an object's geometric properties is transformed into specific motor programs. Pairs of transcranial magnetic stimulation(More)
The vacuolar H(+)-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary gland cells energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). We have shown previously that exposure to 5-HT induces a cAMP-mediated reversible assembly of V(0) and V(1) subcomplexes to V-ATPase holoenzymes and(More)
When a part of the body moves, the sensation evoked by a probe stimulus to that body part is attenuated. Two mechanisms have been proposed to explain this robust and general effect. First, feedforward motor signals may modulate activity evoked by incoming sensory signals. Second, reafferent sensation from body movements may mask the stimulus. Here we(More)
Recent studies have shown that self-generated tactile sensations are perceived as weaker than the same sensations externally generated. This has been linked to a central comparator mechanism that uses efference copy to attenuate the predictable component of sensory inputs arising from one's own actions in order to enhance the salience of external stimuli.(More)