Learn More
The North Atlantic Oscillation (NAO) is one of the most prominent and recurrent patterns of atmospheric circulation variability. It dictates climate variability from the eastern seaboard of the United States to Siberia and from the Arctic to the subtropical Atlantic, especially during boreal winter, so variations in the NAO are important to society and for(More)
Observations of internal wave velocity fluctuations show that enhanced turbulent mixing over rough topography in the Southern Ocean is remarkably intense and widespread. Mixing rates exceeding background values by a factor of 10 to 1000 are common above complex bathymetry over a distance of 2000 to 3000 kilometers at depths greater than 500 to 1000 meters.(More)
Zonally symmetric fluctuations of the midlatitude westerly winds characterize the primary mode of atmospheric variability in the Southern Hemisphere during all seasons. This is true not only in observations but also in an unforced 15 000-yr integration of a coarse-resolution (R15) coupled ocean–atmosphere model. Here it is documented how this mode of(More)
Numerical experiments are performed to examine the causes of variability of Atlantic Ocean SST during the period covered by the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis (1958–98). Three ocean models are used. Two are mixed layer models: one with a 75-m-deep mixed layer and the other with a(More)
Variability of the North Atlantic Oscillation and the Tropical Atlantic dominate the climate of the North Atlantic sector, the underlying ocean and surrounding continents on interannual to decadal time scales. Here we review these phenomena, their climatic impacts and our present state of understanding of their underlying cause.
Subtropical western boundary currents are warm, fast-flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake 1–4. The(More)
The response of the Atlantic Ocean to North Atlantic Oscillation (NAO)-like wind forcing has been investigated using an ocean-only general circulation model coupled to an atmospheric boundary layer model. A series of idealized experiments was performed to investigate the interannual to multi-decadal frequency response of the ocean to a winter wind anomaly(More)
A novel strategy is proposed for the efficient simulation of geochemical tracers in ocean models. The method captures the tracer advection and diffusion in a general circulation model (GCM) without any alteration (or even knowledge) of the GCM code. In comparison with offline tracer models, the proposed method is considerably more efficient and(More)