Martin V. Kurtev

Learn More
Calorie restriction extends lifespan in organisms ranging from yeast to mammals. In yeast, the SIR2 gene mediates the life-extending effects of calorie restriction. Here we show that the mammalian SIR2 orthologue, Sirt1 (sirtuin 1), activates a critical component of calorie restriction in mammals; that is, fat mobilization in white adipocytes. Upon food(More)
Members of the Sir2 family of NAD-dependent protein deacetylases regulate diverse cellular processes including aging, gene silencing, and cellular differentiation. Here, we report that the distant mammalian Sir2 homolog SIRT6 is a broadly expressed, predominantly nuclear protein. Northern analysis of embryonic samples and multiple adult tissues revealed(More)
Calorie restriction (CR) increases lifespan in organisms ranging from budding yeast through mammals. Mitochondrial adaptation represents a key component of the response to CR. Molecular mechanisms underlying this adaptation are largely unknown. Here we show that lysine acetylation of mitochondrial proteins is altered during CR in a tissue-specific fashion.(More)
In yeast, Sir2 family proteins (sirtuins) regulate gene silencing, recombination, DNA repair, and aging via histone deacetylation. Most of the seven mammalian sirtuins (Sirt1-Sirt7) have been implicated as NAD(+)-dependent protein deacetylases with targets ranging from transcriptional regulators to metabolic enzymes. We report that neural-specific deletion(More)
The mechanisms by which proneural basic helix-loop-helix (bHLH) factors control neurogenesis have been characterized, but it is not known how they specify neuronal cell-type identity. Here, we provide evidence that two conserved serine residues on the bHLH factor neurogenin 2 (Ngn2), S231 and S234, are phosphorylated during motor neuron differentiation. In(More)
  • 1