Learn More
The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark(More)
A fundamental challenge facing biologists is to identify DNA binding sites for unknown regulatory factors, given a collection of genes believed to be coregulated. The program YMF identifies good candidates for such binding sites by searching for statistically overrepresented motifs. More specifically, YMF enumerates all motifs in the search space and is(More)
Unlike many pathogens that are overtly harmful to their hosts, Mycobacterium tuberculosis can persist for years within humans in a clinically latent state. Latency is often linked to hypoxic conditions within the host. Among M. tuberculosis genes induced by hypoxia is a putative transcription factor, Rv3133c/DosR. We performed targeted disruption of this(More)
This paper demonstrates that Shamir's scheme [10] is not secure against certain forms of cheating. A small modification to his scheme retains the security and efficiency of the original, is secure against these forms of cheating, and preserves the property that its security does not depend on any unproven assumptions such as the intractability of computing(More)
Phylogenetic footprinting is a method for the discovery of regulatory elements in a set of orthologous regulatory regions from multiple species. It does so by identifying the best conserved motifs in those orthologous regions. We describe a computer algorithm designed specifically for this purpose, making use of the phylogenetic relationships among the(More)
Phylogenetic footprinting is a method for the discovery of regulatory elements in a set of homologous regulatory regions, usually collected from multiple species. It does so by identifying the best conserved motifs in those homologous regions. This note describes web software that has been designed specifically for this purpose, making use of the(More)
Understanding the mechanisms that determine the regulation of gene expression is an important and challenging problem. A fundamental subproblem is to identify DNA-binding sites for unknown regulatory factors, given a collection of genes believed to be coregulated, and given the noncoding DNA sequences near those genes. We present an enumerative statistical(More)
Understanding the complex and varied mechanisms that regulate gene expression is an important and challenging problem. A fundamental sub-problem is to identify DNA binding sites for unknown regulatory factors, given a collection of genes believed to be co-regulated. We discuss a computational method that identifies good candidates for such binding sites.(More)