Learn More
Neurons in the mammalian suprachiasmatic nuclei (SCN) generate daily rhythms in physiology and behavior, but it is unclear how they maintain and synchronize these rhythms in vivo. We hypothesized that parallel signaling pathways in the SCN are required to synchronize rhythms in these neurons for coherent output. We recorded firing and clock-gene expression(More)
As part of an effort to characterize the circadian system of the zebrafish, we examined the circadian regulation of locomotor activity in adult males and females. Gross locomotor activity was measured using infrared movement detectors. The effects of light, dark, and temperature on the amplitude, phase, and free-running periods of locomotor rhythms were(More)
Seizures do not often strike randomly but may occur in circadian patterns. We compared daily times of partial seizures determined by continuous electroencephalography among patients with mesial temporal lobe epilepsy (MTLE; n = 64), those with extratemporal lobe (XTLE; n = 26) or lesional temporal lobe epilepsy (LTLE; n = 8), and a rat model similar to MTLE(More)
In Drosophila, a number of key processes such as emergence from the pupal case, locomotor activity, feeding, olfaction, and aspects of mating behavior are under circadian regulation. Although we have a basic understanding of how the molecular oscillations take place, a clear link between gene regulation and downstream biological processes is still missing.(More)
PURPOSE Circadian regulation via the suprachiasmatic nuclei and rest-activity state may influence expression of limbic seizures. METHODS Male rats (n = 14) were made epileptic by electrical stimulation of the hippocampus, causing limbic status epilepticus and subsequent seizures. We monitored seizures with intrahippocampal electrodes in 12-12-h light/dark(More)
The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus functions as a circadian pacemaker. This study used multimicroelectrode plates to measure extracellular action potential activity simultaneously from multiple sites within the cultured mouse SCN. Neurons within the isolated mouse SCN expressed a circadian rhythm in spontaneous firing rate for(More)
The rapid turnover of luciferase and the sensitive, non-invasive nature of its assay make this reporter gene uniquely situated for temporal gene expression studies. To determine the in vivo regulatory pattern of the Drosophila clock gene period (per), we generated transgenic strains carrying a luciferase cDNA fused to the promoter region of the per gene.(More)
PURPOSE Hypothalamic regulation of the reproductive axis in temporal lobe epilepsy (TLE), represented by the ultradian pulsatile secretion of luteinizing hormone (LH), has been shown to be altered interictally and postictally. Our objective is to determine if epilepsy or seizures disrupt normal circadian fluctuations of LH as well as circadian organization(More)
The central circadian pacemaker is located in the hypothalamus of mammals, but essentially the same oscillating system operates in peripheral tissues and even in immortalized cell lines. Using luciferase reporters that allow automated monitoring of circadian gene expression in mammalian fibroblasts, we report the collection and analysis of precise rhythmic(More)
RATIONALE Epileptic seizures may alter neuroendocrinological cycles. Light pulses induce phase shifts in circadian rhythms. Using hippocampal-kindled rats to ensure maximal clinical expression, we determined if seizures likewise induce phase shifts. METHODS We monitored the circadian rhythm of temperature (CRT) with intraperitoneal radiotelemetry in rats(More)