Martin Spitzbarth

Learn More
In electron paramagnetic resonance (EPR) distance distributions between site-directedly attached spin labels in soft matter are obtained by measuring their dipole-dipole interaction. The analysis of these distance distributions can be misleading particularly for broad distributions, because the most probable distance deviates from the distance between the(More)
A method is demonstrated to monitor macroscopic translational diffusion using electron paramagnetic resonance (EPR) imaging. A host-guest system with nitroxide spin probe 3-(2-Iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (IPSL) as a guest inside the periodic mesoporous organosilica (PMO) aerogel UKON1-GEL as a host and ethanol as a solvent is used(More)
Separation of compounds using liquid chromatography is a process of enormous technological importance. This is true in particular for chiral substances, when one enantiomer has the desired set of properties and the other one may be harmful. The degree of development in liquid chromatography is extremely high, but still there is a lack in understanding based(More)
Mass transport of molecular compounds through porous solids is a decisive step in numerous, important applications like chromatography or heterogeneous catalysis. It is a multi-scale, hierarchical phenomenon: macrodiffusion (>μm) is influenced, in addition to parameters like grain boundaries and particle packing, by meso-scale (>10 nm, <μm) factors like(More)
The existence of more than one functional entity is fundamental for materials, which are desired of fulfilling complementary or succeeding tasks. Whereas it is feasible to make materials with a homogeneous distribution of two different, functional groups, cases are extremely rare exhibiting a smooth transition from one property to the next along a defined(More)
Diffusion in porous materials is under ongoing active investigation due to its major role in practical applications such as catalysis and chromatography. The complexity of these systems limits the use of the Einstein-Stokes diffusion theory, and it must be distinguished between the microscopic scale of diffusion at a molecular level, which is sensitive to(More)
Continuous wave electron paramagnetic resonance imaging (EPRI) experiments often suffer from low signal to noise ratio. The increase in spectrometer time required to acquire data of sufficient quality to allow further analysis can be counteracted in part by more processing effort during the image reconstruction step. We suggest a simultaneous iterative(More)
  • 1