Learn More
The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and(More)
OBJECTIVE To investigate whether error-related potentials can be used to increase information transfer rate of a P3 brain-computer interface (BCI) in healthy and motor-impaired individuals. METHODS Extraction and classification of the error-related potential was performed offline on data recorded from six amyotrophic lateral sclerosis (ALS) patients. An(More)
Telemetric recordings of field potentials from frontal cortex, hippocampus, striatum and reticular formation of freely moving rats were analysed before and after injection of the enantiomeric hallucinogenic amphetamine derivatives R-DOB [(-)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane], R-DOM [(-)-1-(2,5-dimethoxy-4-methylphenyl)-2-amino-propane] and(More)
Chronic implantation of four bipolar concentric electrodes into frontal cortex, hippocampus, striatum and reticular formation of the rat allows continuous recording of bioelectric potentials during the action of various drugs. Frequency analysis of the potentials serves to quantify EEG changes over longer periods of time. Segmentation of the spectra into(More)
Chronic implantation of 4 bipolar concentric electrodes into frontal cortex, thalamus, striatum and reticular formation allowed repeated recordings of field potentials from freely moving rats. After radiotransmission the signals were quantitatively evaluated by spectral power analysis. The power in particular frequency bands changed in the presence of drugs(More)
Rats were stereotactically implanted with electrodes into four brain areas (frontal cortex, hippocampus, striatum, and reticular formation) to allow registration of intracerebral field potentials. Connection of the electrodes to a microplug fixed to the skull of the animals allowed wireless transmission of the signals using a four-channel telemetric device.(More)
The effect of caffeine (single oral doses of 200 mg and 400 mg) on the CNS was tested under resting conditions and while performing a concentration performance test in a placebo-controlled pilot study on ten healthy males. The EEG was evaluated quantitatively by spectral analysis with a Computer Aided Topographical ElectroEncephaloMetry system. Comparison(More)
The effects of dizocilipine (MK-801), (+/-)-5-methyl-10,11-dihydro-5Hdibenzo-[a,d]-cyclohepten-5, 10-imine maleate, after IP injection into freely behaving rats, have been compared with the action of ketamine-chloride and phencyclidine (PCP). MK-801 produced strongly dose-dependent effects which could be followed quantitatively over a time of 4 h. During(More)
The goal of a Brain-Computer Interface (BCI) is to enable communication by pure brain activity without the need for muscle control. Recently BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present two new methods to improve classification in a c-VEP BCI.(More)
Classification of evoked or event-related potentials is an important prerequisite for many types of brain-computer interfaces (BCIs). To increase classification accuracy, spatial filters are used to improve the signal-to-noise ratio of the brain signals and thereby facilitate the detection and classification of evoked or event-related potentials. While(More)