Learn More
MOTIVATION In silico experiments in bioinformatics involve the co-ordinated use of computational tools and information repositories. A growing number of these resources are being made available with programmatic access in the form of Web services. Bioinformatics scientists will need to orchestrate these Web services in workflows as part of their analyses.(More)
SUMMARY Life sciences research is based on individuals, often with diverse skills, assembled into research groups. These groups use their specialist expertise to address scientific problems. The in silico experiments undertaken by these research groups can be represented as workflows involving the coordinated use of analysis programs and information(More)
The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for(More)
BACKGROUND Meaningful exchange of microarray data is currently difficult because it is rare that published data provide sufficient information depth or are even in the same format from one publication to another. Only when data can be easily exchanged will the entire biological community be able to derive the full benefit from such microarray studies. (More)
Soaplab is a set of Web Services providing programmatic access to many applications on remote computers. Because such applications in the scientific environment usually analyze data, Soaplab is often referred to as an Analysis Web Service. It uses a unified (and partly standardized) API to find an analysis tool, discover what data it requires and what data(More)
MOTIVATION In silico experiments necessitate the virtual organization of people, data, tools and machines. The scientific process also necessitates an awareness of the experience base, both of personal data as well as the wider context of work. The management of all these data and the co-ordination of resources to manage such virtual organizations and the(More)
The BioMoby project was initiated in 2001 from within the model organism database community. It aimed to standardize methodologies to facilitate information exchange and access to analytical resources, using a consensus driven approach. Six years later, the BioMoby development community is pleased to announce the release of the 1.0 version of the(More)
BACKGROUND As biology becomes an increasingly computational science, it is critical that we develop software tools that support not only bioinformaticians, but also bench biologists in their exploration of the vast and complex data-sets that continue to build from international genomic, proteomic, and systems-biology projects. The BioMoby interoperability(More)
MyGrid is an e-Science Grid project that aims to help biologists and bioinformaticians to perform workflow-based in silico experiments, and help them to automate the management of such workflows through personalisation, notification of change and publication of experiments. In this paper, we describe the architecture of myGrid and how it will be used by the(More)
MOTIVATION The user-friendly, graphical X-windows interface (WPI) to the GCG sequence analysis package can often not be used due to the lack of an X-server on PC or Macintosh computers. Because Web browsers like Netscape are much more common on those platforms, we decided to develop W2H, a WWW interface to the GCG Sequence Analysis Software Package with(More)