Learn More
Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points.(More)
In this paper, a new GIS workflow for fully automated building detection from airborne LiDAR data is introduced. The strengths of both raster and point cloud based methods are combined, in order to derive reliable building candidate regions serving as input for 3D building outline extraction and modeling algorithms. Input data are a normalized Digital(More)
A relative height threshold is defined to separate potential roof points from the point cloud, followed by a segmentation of these points into homogeneous areas fulfilling the defined constraints of roof planes. The normal vector of each laser point is an excellent feature to decompose the point cloud into segments describing planar patches. An object-based(More)
In this study, a semi-empirical model that was originally developed for stem volume estimation is used for aboveground biomass (AGB) estimation of a spruce dominated alpine forest. The reference AGB of the available sample plots is calculated from forest inventory data by means of biomass expansion factors. Furthermore, the semi-empirical model is extended(More)
Rapid mapping of damaged regions and individual buildings is essential for efficient crisis management. Airborne laser scanner (ALS) data is potentially able to deliver accurate information on the 3D structures in a damaged region. In this paper we describe two different strategies how to process ALS point clouds in order to detect collapsed buildings(More)
In recent years there has been an increasing demand among home owners for cost effective sustainable energy production such as solar energy to provide heating and electricity. A lot of research has focused on the assessment of the incoming solar radiation on roof planes acquired by, e.g., Airborne Laser Scanning (ALS). However, solar panels can also be(More)
Terrestrial laser scanning provides a point cloud, but usually also the " intensity " values are available. These values are mainly influenced by the distance from sensor to object and by the object's reflection properties. We demonstrate that it is possible to retrieve these reflection properties from the observed range and the intensity value. An(More)
In times of higher market prices of fossil fuels and to meet the increasingly environmental and economic threads of climate change renewable energy must play a major role for global energy supply. This paper focuses on a new method for fully automated solar potential assessment of roof planes from airborne LiDAR data and uses the full 3D information for(More)
Citizens are increasingly becoming an important source of geographic information, sometimes entering domains that had until recently been the exclusive realm of authoritative agencies. This activity has a very diverse character as it can, amongst other things, be active or passive, involve spatial or aspatial data and the data provided can be variable in(More)