Martin Reick

Learn More
Neuronal PAS domain protein 2 (NPAS2) is a transcription factor expressed primarily in the mammalian forebrain. NPAS2 is highly related in primary amino acid sequence to Clock, a transcription factor expressed in the suprachiasmatic nucleus that heterodimerizes with BMAL1 and regulates circadian rhythm. To investigate the biological role of NPAS2, we(More)
Clock:BMAL1 and NPAS2:BMAL1 are heterodimeric transcription factors that control gene expression as a function of the light-dark cycle. Although built to fluctuate at or near a 24-hour cycle, the clock can be entrained by light, activity, or food. Here we show that the DNA-binding activity of the Clock:BMAL1 and NPAS2:BMAL1 heterodimers is regulated by the(More)
The core apparatus that regulates circadian rhythm has been extensively studied over the past five years. A looming question remains, however, regarding how this apparatus is adjusted to maintain coordination between physiology and the changing environment. The diversity of stimuli and input pathways that gain access to the circadian clock are summarized.(More)
Animal behavior is synchronized to the 24-hour light:dark (LD) cycle by regulatory programs that produce circadian fluctuations in gene expression throughout the body. In mammals, the transcription factor CLOCK controls circadian oscillation in the suprachiasmatic nucleus of the brain; its paralog, neuronal PAS domain protein 2 (NPAS2), performs a similar(More)
Neuronal PAS domain protein 2 (NPAS2) is a basic helix-loop-helix (bHLH) PAS domain transcription factor expressed in multiple regions of the vertebrate brain. Targeted insertion of a beta-galactosidase reporter gene (lacZ) resulted in the production of an NPAS2-lacZ fusion protein and an altered form of NPAS2 lacking the bHLH domain. The neuroanatomical(More)
The essential splicing factor U2AF (U2 auxiliary factor) is a heterodimer composed of 65-kDa (U2AF(65)) and 35-kDa (U2AF(35)) subunits. U2AF(35) has multiple functions in pre-mRNA splicing. First, U2AF(35) has been shown to function by directly interacting with the AG at the 3' splice site. Second, U2AF(35) is thought to play a role in the recruitment of(More)
Aryl hydrocarbons (AHs) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene activate the sequence-specific DNA-binding activity of the AH receptor. In the rat hepatocyte-derived cell line LCS7, DNA-binding activity peaked after 30 min and was then down-regulated, reaching negligible levels by 2 h. Down-regulation could be blocked, and DNA-binding(More)
  • 1