Learn More
Stroke is a prevalent and devastating disorder, and no treatment is currently available to restore lost neuronal function after stroke. One unique therapy that improves recovery after stroke is neutralization of the neurite inhibitory protein Nogo-A. Here, we show, in a clinically relevant model, improved functional recovery and brain reorganization in the(More)
A prominent hallmark of Alzheimer's disease pathology is cerebral amyloidosis. However, it is not clear how extracellular amyloid-beta peptide (A beta) deposition and amyloid formation compromise brain function and lead to dementia. It has been argued that extracellular amyloid deposition is neurotoxic and/or that soluble A beta oligomers impair synaptic(More)
Spinal cord trauma leads to loss of motor, sensory and autonomic functions below the lesion. Recovery is very restricted, due in part to neurite growth inhibitory myelin proteins, in particular Nogo-A. Two neutralizing antibodies against Nogo-A were used to study recovery and axonal regeneration after spinal cord lesions. Three months old Lewis rats were(More)
More than 50 % of patients with multiple sclerosis (MS) suffer from cognitive deficits. Attention is one of the most frequently affected cognitive functions. It has been shown that MS patients suffer from a specific but not necessarily from a generalized decrease in performance and that different severity grades of impaired attentional processing can be(More)
Quantitative functional magnetic resonance imaging was applied to characterize brain function in amyloid precursor protein 23 (APP23) transgenic mice, which reproduce the neuropathological alterations associated with Alzheimer's disease. Electrical stimulation of the paw led to cerebral blood volume increases in the contralateral somatosensory cortex. In(More)
Functional recovery in cytoprotected somatosensory cortex in a rat stroke model was studied using functional MRI (fMRI). Calcium antagonist treatment (isradipine) following permanent middle cerebral artery occlusion (pMCAO) reduced the infarct volume by 33 +/- 9%. The somatosensory cortex representing the forepaws was spared from infarction; however,(More)
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system whose pathological mechanisms are still not completely understood. Physical as well as cognitive deterioration are consequences within the disease process that have an extensive impact on the patient's quality of life. Therefore, understanding the functional background of(More)
Functional magnetic resonance imaging (fMRI) has been applied to study the consequences of transient focal ischemia on neuronal excitability in the rat brain. The experimental paradigm consisted of measuring the changes in local cerebral blood volume (CBV) induced by systemic infusion of the GABA(A) antagonist bicuculline after occlusion of the middle(More)
Modern drug development requires technologies that allow rapid translation from the preclinical to the clinical stage. It is obvious that non-invasive imaging modalities such as magnetic resonance imaging (MRI) will play a central role in this regard. This article reviews the use of structural and functional MRI readouts for characterization of central(More)
  • 1