Martin Rausch

Learn More
Stroke is a prevalent and devastating disorder, and no treatment is currently available to restore lost neuronal function after stroke. One unique therapy that improves recovery after stroke is neutralization of the neurite inhibitory protein Nogo-A. Here, we show, in a clinically relevant model, improved functional recovery and brain reorganization in the(More)
Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model that in several respects mimics human multiple sclerosis (MS), and can be used to design or validate new strategies for treatment of this disease. In the present study, different MRI techniques (macrophage tracking based on labeling cells in vivo by ultrasmall particles of iron(More)
Spinal cord trauma leads to loss of motor, sensory and autonomic functions below the lesion. Recovery is very restricted, due in part to neurite growth inhibitory myelin proteins, in particular Nogo-A. Two neutralizing antibodies against Nogo-A were used to study recovery and axonal regeneration after spinal cord lesions. Three months old Lewis rats were(More)
Dynamic measurements of local changes in relative cerebral blood volume (CBV(rel)) during a pharmacological stimulation paradigm were performed in mice. Using magnetite nanoparticles as an intravascular contrast agent, high-resolution CBV(rel) maps were obtained. Intravenous administration of the GABA(A) antagonist bicuculline prompted increases in local(More)
The long blood circulating time and the progressive macrophage uptake in inflammatory tissues of ultrasmall superparamagnetic iron oxide (USPIO) particles are 2 properties of major importance for magnetic resonance imaging (MRI) pathologic tissue characterization. This article reviews the proof of principle of applications such as imaging of carotid(More)
More than 50 % of patients with multiple sclerosis (MS) suffer from cognitive deficits. Attention is one of the most frequently affected cognitive functions. It has been shown that MS patients suffer from a specific but not necessarily from a generalized decrease in performance and that different severity grades of impaired attentional processing can be(More)
APP23 transgenic mice overexpressing amyloid precursor protein (APP751) reproduce neuropathological changes associated with Alzheimer's disease such as high levels of amyloid plaques, cerebral amyloid angiopathy, and associated vascular pathologies. Functional magnetic resonance imaging (fMRI) was applied to characterize brain functionality in these mice(More)
Assessment of tumour vascularity may characterize malignancy as well as predict responsiveness to anti-angiogenic therapy. Non-invasive measurement of tumour perfusion and blood vessel permeability assessed as the transfer constant, K(trans), can be provided by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Using the orthotopic murine(More)
Cells of the mononuclear phagocytotic system (MPS) are often found near to or within ischemic tissue and can potentially aggravate cellular damage. Hence, visualization of those cells would allow demarcation of putatively affected from intact tissue. Experimental MRI studies have shown that ultrasmall particles of dextran-coated iron oxide (USPIO) are(More)
PURPOSE To examine the efficacy of FTY720 as a new agent to reduce inflammatory activity in an animal model of multiple sclerosis (MS) by in vivo macrophage tracking. MATERIAL AND METHODS FTY720 was used for treatment of rats in a model of chronic relapsing experimental autoimmune encephalomyelitis (EAE) at an oral dose of 0.3 mg/kg/day. Magnetic(More)