Learn More
The role of oxidative stress in seizure-induced brain injury was investigated in a kainic acid model of experimental epilepsy. Kainic acid (12.5 mg/kg) or saline was injected intraperitoneally into 12-week-old male Fischer 344 rats and sacrificed by decapitation at 4 and 24 h after injection. Markers of oxidative stress including protein carbonyls,(More)
A structure-potency study examining the ability of dopamine (DA), its major metabolites and related amine and acetate congeners to inhibit NADH-linked mitochondrial O(2) consumption was carried out to elucidate mechanisms by which DA could induce mitochondrial dysfunction. In the amine studies, DA was the most potent inhibitor of respiration (IC(50) 7.0 mm)(More)
The neurotoxic actions of methamphetamine (METH) may be mediated in part by reactive oxygen species (ROS). Methamphetamine administration leads to increases in ROS formation and lipid peroxidation in rodent brain; however, the extent to which proteins may be modified or whether affected brain regions exhibit similar elevations of lipid and protein oxidative(More)
Examination of the downstream mediators responsible for inhibition of mitochondrial respiration by dopamine (DA) was investigated. Consistent with findings reported by others, exposure of rat brain mitochondria to 0.5 mm DA for 15 min at 30 degrees C inhibited pyruvate/glutamate/malate-supported state-3 respiration by 20%. Inhibition was prevented in the(More)
Nigrostriatal cell death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease results from the inhibition of mitochondrial respiration by 1-methyl-4-phenylpyridinium (MPP+). MPP+ blocks electron flow from NADH dehydrogenase to coenzyme Q at or near the same site as do rotenone and piericidin and protects against binding of and(More)
OBJECTIVE Pharmacological, clinical, and postmortem studies suggest altered gamma-aminobutyric acid (GABA)-ergic and glutamatergic function in patients with schizophrenia. The dorsolateral prefrontal cortex is one key locus of abnormality. The precise neurochemical mechanisms underlying neurotransmitter alterations, such as hypoglutamatergia or GABA(More)
1-Methyl-4-phenylpyridinium (MPP+), the toxic agent in MPTP-induced dopaminergic neurotoxicity, is thought to act by inhibiting mitochondrial electron transport at complex I. This study examined this latter action further with a series of 4'-alkylated analogues of MPP+. These derivatives had IC50 values that ranged from 0.5 to 110 microM and from 1.6 to(More)
We have investigated the mechanism of the inhibition of membrane-bound NADH dehydrogenase by 1-methyl-4-phenylpyridinium (MPP+) and a series of its 4'-alkyl-substituted analogs of increasing hydrophobicity, as well as their neutral, desmethyl congeners. Comparison of hydrophobicity, as measured by partition coefficients, with the IC50 for the inhibition of(More)
Glutaredoxin (Grx) is a specific and efficient catalyst of glutathione-dependent deglutathionylation of protein-SS-glutathione mixed disulfides. Grx has been identified in brain cytosol, but the presence of activity in subcellular organelles has not been reported. Increases in protein glutathionylation are likely to occur in mitochondria during oxidative(More)