Martin R Bryce

Learn More
A format for a disposable screen-printed biosensor was investigated for monitoring formaldehyde. The screen-printed sensor format comprised a working electrode (WE) modified with platinised carbon, a new lipophilic tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) salt as mediator, a plasticised polyurethane membrane (TECOFLEX SG80, PU) with anionic(More)
Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH(2), and CN) at a solid/liquid interface. The combination of current-distance and(More)
A quantum circuit rule for combining quantum interference effects in the conductive properties of oligo(phenyleneethynylene) (OPE)-type molecules possessing three aromatic rings was investigated both experimentally and theoretically. Molecules were of the type X-Y-X, where X represents pyridyl anchors with para (p), meta (m) or ortho (o) connectivities and(More)
There is much discussion of molecules as components for future electronic devices. However, the contacts, the local environment and the temperature can all affect their electrical properties. This sensitivity, particularly at the single-molecule level, may limit the use of molecules as active electrical components, and therefore it is important to design(More)
Organic light-emitting diodes (OLEDs) have their performance limited by the number of emissive singlet states created upon charge recombination (25%). Recently, a novel strategy has been proposed, based on thermally activated up-conversion of triplet to singlet states, yielding delayed fluorescence (TADF), which greatly enhances electroluminescence. The(More)
WOLEDs offer new design opportunities in practical solid-state lighting and could play a significant role in reducing global energy consumption. Obtaining white light from organic LEDs is a considerable challenge. Alongside the development of new materials with improved color stability and balanced charge transport properties, major issues involve the(More)
We report a combined experimental and theoretical investigation of the length dependence and anchor group dependence of the electrical conductance of a series of oligoyne molecular wires in single-molecule junctions with gold contacts. Experimentally, we focus on the synthesis and properties of diaryloligoynes with n = 1, 2, and 4 triple bonds and the(More)
The highly doped electrodes of a vertical silicon nanogap device have been bridged by a 5.85 nm long molecular wire, which was synthesized in situ by grafting 4-ethynylbenzaldehyde via C-Si links to the top and bottom electrodes and thereafter by coupling an amino-terminated fluorene unit to the aldehyde groups of the activated electrode surfaces. The(More)
We determine and compare, at the single molecule level and under identical environmental conditions, the electrical conductance of four conjugated phenylene oligomers comprising terminal sulfur anchor groups with simple structural and conjugation variations. The comparison shows that the conductance of oligo(phenylene vinylene) (OPV) is slightly higher than(More)
We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from(More)