#### Filter Results:

#### Publication Year

1998

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We present an algorithm for computing depth-optimal decompositions of logical operations, leveraging a meet-in-the-middle technique to provide a significant speed-up over simple brute force algorithms. As an illustration of our method we implemented this algorithm and found factorizations of the commonly used quantum logical operations into elementary gates… (More)

Two orthonormal bases B and B ′ of a d-dimensional complex inner-product space are called mutually unbiased if and only if |b|b ′ | 2 = 1/d holds for all b ∈ B and b ′ ∈ B ′. The size of any set containing pairwise mutually unbiased bases of C d cannot exceed d + 1. If d is a power of a prime, then extremal sets containing d + 1 mutually unbiased bases are… (More)

— We present an algorithm to construct quantum circuits for encoding and inverse encoding of quantum convo-lutional codes. We show that any quantum convolutional code contains a subcode of finite index which has a non-catastrophic encoding circuit. Our work generalizes the conditions for non-catastrophic encoders derived in a paper by Ollivier and Tillich… (More)

A classical computer does not allow to calculate a discrete cosine transform on AE points in less than linear time. This trivial lower bound is no longer valid for a computer that takes advantage of quantum mechanical superposition, entanglement, and interference principles. In fact, we show that it is possible to realize the discrete cosine transforms and… (More)

— Unitary error bases generalize the Pauli matrices to higher dimensional systems. Two basic constructions of unitary error bases are known: An algebraic construction by Knill, which yields nice error bases, and a combinato-rial construction by Werner, which yields shift-and-multiply bases. An open problem posed by Schlingemann and Werner relates these two… (More)

Recently, it was shown that Repeat-Until-Success (RUS) circuits can achieve a 2.5 times reduction in expected depth over ancilla-free techniques for single-qubit unitary decomposition. However, the previously best-known algorithm to synthesize RUS circuits requires exponential classical runtime. In this work we present an algorithm to synthesize an RUS… (More)

It has been known for some time that graph isomorphism reduces to the hidden subgroup problem (HSP). What is more, most exponential speedups in quantum computation are obtained by solving instances of the HSP. A common feature of the resulting algorithms is the use of quantum coset states, which encode the hidden subgroup. An open question has been how hard… (More)

— We show that any stabilizer code over a finite field is equivalent to a graphical quantum code. Furthermore we prove that a graphical quantum code over a finite field is a stabilizer code. The technique used in the proof establishes a new connection between quantum codes and quadratic forms. We provide some simple examples to illustrate our results.

— Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. We introduce two new families of quantum convolutional codes. Our construction is based on an algebraic method which allows to construct classical convolutional codes from block codes, in particular BCH codes. These codes have the property that… (More)

Nice error bases have been introduced by Knill as a generalization of the Pauli basis. These bases are shown to be projective representations of finite groups. We classify all nice error bases of small degree, and all nice error bases with abelian index groups. We show that in general an index group of a nice error basis is necessarily solvable.