Learn More
RDF has become very popular for semantic data publishing due to its flexible and universal graph-like data model. Thus, the ever-increasing size of RDF data collections raises the need for scalable distributed approaches. We endorse the usage of existing infrastructures for Big Data processing like Hadoop for this purpose. Yet, SPARQL query performance is a(More)
One of the major challenges in large-scale data processing with MapReduce is the smart computation of joins. Since Semantic Web datasets published in RDF have increased rapidly over the last few years, scalable join techniques become an important issue for SPARQL query processing as well. In this paper, we introduce the Map-Side Index Nested Loop Join(More)
The MapReduce programming model has gained traction in different application areas in recent years, ranging from the analysis of log files to the computation of the RDFS closure. Yet, for most users the MapReduce abstraction is too low-level since even simple computations have to be expressed as Map and Reduce phases. In this paper we propose RDFPath, an(More)
In this paper we discuss PigSPARQL, a competitive yet easy to use SPARQL query processing system on MapReduce that allows ad-hoc SPARQL query processing on large RDF graphs out of the box. Instead of a direct mapping, PigSPARQL uses the query language of Pig, a data analysis platform on top of Hadoop MapReduce, as an intermediate layer between SPARQL and(More)
RDF datasets with billions of triples are no longer unusual and continue to grow constantly (e.g. LOD cloud) driven by the inherent flexibility of RDF that allows to represent very diverse datasets, ranging from highly structured to unstructured data. Because of their size, understanding and processing RDF graphs is often a difficult task and methods to(More)
In this paper we investigate the scalable processing of complex SPARQL queries on very large RDF datasets. As underlying platform we use Apache Hadoop, an open source implementation of Google's MapReduce for massively parallelized computations on a computer cluster. We introduce PigSPARQL, a system which gives us the opportunity to process complex SPARQL(More)
In recent times, it has been widely recognized that, due to their inherent scalability, frameworks based on MapReduce are indispensable for so-called "Big Data" applications. However, for Semantic Web applications using SPARQL, there is still a demand for sophisticated MapReduce join techniques for processing basic graph patterns, which are at the core of(More)