Martin P Stockli

  • Citations Per Year
Learn More
Spallation Neutron Source is currently in progress of a multiyear plan to ramp ion beam power to the initial design power of 1.4 MW. Key to reaching this goal is understanding and improving the operation of the H(-) ion source. An Allison scanner was installed on the ion source in the test facility to support this improvement. This paper will discuss the(More)
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW after achieving 1.1 MW. The RFdriven multicusp ion source employing internal RF antenna originally developed by LBNL has been used to deliver up to ~38 mA H beam current in 1 msec pulses at 60 Hz with limited availability. To(More)
The operational lifetime of a radio-frequency ~rf! ion source is generally governed by the length of time the insulating structure protecting the antenna survives during exposure to the plasma. Coating the antenna with a thin layer of insulating material is a common means of extending the life of such antennas. When low-power/low-duty factor rf excitation(More)
The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H(-) beam currents than can be produced from conventional ion sources such as the base line SNS source. H(-) currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with a rms emittance of 0.20-0.35pi mm mrad and a approximately 7% duty factor(More)
This paper describes the ramp up of the beam power for the Spallation Neutron Source by ramping up the pulse length, the repetition rate, and the beam current emerging from the H(-) source. Starting out with low repetition rates (< or = 10 Hz) and short pulse lengths (< or = 0.2 ms), the H(-) source and low-energy beam transport delivered from Lawrence(More)
The Spallation Neutron Source H(-) ion source is operated with a pulsed 2-MHz RF (50-60 kW) to produce the 1-ms long, ∼50 mA H(-) beams at 60 Hz. A continuous low power (∼300 W) 13.56-MHz RF plasma, which is initially ignited with a H2 pressure bump, serves as starter plasma for the pulsed high power 2-MHz RF discharges. To reduce the risk of plasma outages(More)
A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field(More)
A RF-driven, Cs-enhanced H(-) ion source feeds the SNS accelerator with a high current (typically >50 mA), ∼1.0 ms pulsed beam at 60 Hz. To achieve the persistent high current beam for several weeks long service cycles, each newly installed ion source undergoes a rigorous conditioning and cesiation processes. Plasma conditioning outgases the system and(More)
A technique for electron spectroscopy which yields full two-dimensional momentum distributions for continuum electrons has been used to study ejected electrons from single ionization of He by C and proton projectiles at low velocities. Projectile velocities of 1.63, 1.38, and 1.16 a.u. for C and 2.39, 1.71, 1.15, .85, and 0.63 a.u. for protons were used.(More)
A new Allison-type emittance scanner has been built to characterize the ion sources and low energy beam transport systems at Spallation Neutron Source. In this work, the emittance characteristics of the H(-) beam produced with the external-antenna rf-driven ion source and transported through the two-lens electrostatic low energy beam transport are studied.(More)