Learn More
This paper describes an end-to-end system implementation of the transactional memory (TM) programming model on top of the hardware transactional memory (HTM) of the Blue Gene/Q (BG/Q) machine. The TM programming model supports most C/C++ programming constructs on top of a best-effort HTM with the help of a complete software stack including the compiler, the(More)
The Blue Genet/L computer is a massively parallel supercomputer based on IBM system-on-a-chip technology. It is designed to scale to 65,536 dual-processor nodes, with a peak performance of 360 teraflops. This paper describes the project objectives and provides an overview of the system architecture that resulted. We discuss our application-based approach(More)
The Blue Genet/L compute chip is a dual-processor system-on-a-chip capable of delivering an arithmetic peak performance of 5.6 gigaflops. To match the memory speed to the high compute performance, the system implements an aggressive three-level on-chip cache hierarchy. The implemented hierarchy offers high bandwidth and integrated prefetching on cache(More)
This paper gives an overview of the BlueGene/L Supercomputer. This is a jointly funded research partnership between IBM and the Lawrence Livermore National Laboratory as part of the United States Department of Energy ASCI Advanced Architecture Research Program. Application performance and scaling studies have recently been initiated with partners at a(More)
The Blue Genet/L compute chip contains two PowerPCt 440 processor cores, private L2 prefetch caches, a shared L3 cache and double-data-rate synchronous dynamic random access memory (DDR SDRAM) memory controller, a collective network interface, a torus network interface, a physical network interface, an interrupt controller, and a bridge interface to slower(More)
Many studies point to the difficulty of scaling existing computer architectures to meet the needs of an exascale system (i.e., capable of executing 10 18 floating-point operations per second), consuming no more than 20 MW in power, by around the year 2020. This paper outlines a new architecture, the Active Memory Cube, which reduces the energy of(More)
This paper describes the Blue Genet/L advanced diagnostics environment (ADE) used throughout all aspects of the Blue Gene/L project, including design, logic verification, bring-up, diagnostics, and manufacturing test. The Blue Gene/L ADE consists of a lightweight multithreaded coherence-managed kernel, runtime libraries, device drivers, system programming(More)
The BlueGene/L supercomputer has been designed with a focus on power/performance efficiency to achieve high application performance under the thermal constraints of common data centers. To achieve this goal, emphasis was put on system solutions to engineer a power-efficient system. To exploit thread level parallelism, the BlueGene/L system can scale to 64(More)
The Blue Genet/L compute (BLC) and Blue Gene/L link (BLL) chips have extensive facilities for control, bring-up, self-test, debug, and nonintrusive performance monitoring built on a serial interface compliant with IEEE Standard 1149.1. Both the BLL and the BLC chips contain a standard eServere chip JTAG controller called the access macro. For BLC, the(More)