Learn More
We present GJ, a design that extends the Java programming language with generic types and methods. These are both explained and implemented by translation into the unextended language. The translation closely mimics the way generics are emulated by programmers: it erases all type parameters, maps type variables to their bounds, and inserts casts where(More)
We identify three programming language abstractions for the construction of reusable components: abstract type members, explicit selftypes, and modular mixin composition. Together, these abstractions enable us to transform an arbitrary assembly of static program parts with hard references between them into a system of reusable components. The transformation(More)
Good software engineering practice demands generalization and abstraction, whereas high performance demands specialization and concretization. These goals are at odds, and compilers can only rarely translate expressive high-level programs to modern hardware platforms in a way that makes best use of the available resources. Generative programming is a(More)
As the size of datasets continues to grow, machine learning applications are becoming increasingly limited by the amount of available computational power. Taking advantage of modern hardware requires using multiple parallel programming models targeted at different devices (e.g. CPUs and GPUs). However, programming these devices to run efficiently and(More)
As heterogeneous parallel systems become dominant, application developers are being forced to turn to an incompatiblemix of low level programming models (e.g. OpenMP, MPI, CUDA, OpenCL). However, these models do little to shield developers from the difficult problems of parallelization, data decomposition and machine-specific details. Most programmersare(More)