Learn More
The regulation of cell migration is a highly complex process that is often compromised when cancer cells become metastatic. The microtubule cytoskeleton is necessary for cell migration, but how microtubules and microtubule-associated proteins regulate multiple pathways promoting cell migration remains unclear. Microtubule plus-end binding proteins (+TIPs)(More)
TP53INP1 (tumor protein 53-induced nuclear protein 1) is a tumor suppressor, whose expression is downregulated in cancers from different organs. It was described as a p53 target gene involved in cell death, cell-cycle arrest and cellular migration. In this work, we show that TP53INP1 is also able to interact with ATG8-family proteins and to induce(More)
Among the set of genes expressed during the quiescent G0 phase of the cell cycle (gas genes), gas1 encodes for a GPI anchor protein associated to the plasma membrane, which is able to induce growth arrest when overexpressed in proliferating fibroblasts. In this report we describe the isolation and characterization of a gas1 Caenorhabditis elegans homolog,(More)
The MAGE gene family is characterized by a conserved domain (MAGE Homology Domain). A subset of highly homologous MAGE genes (group A; MAGE-A) belong to the chromosome X-clustered cancer/testis antigens. MAGE-A genes are normally expressed in the human germ line and overexpressed in various tumor types; however, their biological function is largely unknown.(More)
In this study, we demonstrate that the subcellular localization of the mineralocorticoid receptor (MR) is regulated by tetratricopeptide domain (TPR) proteins. The high-molecular-weight immunophilin (IMM) FKBP52 links the MR-hsp90 complex to dynein/dynactin motors favoring the cytoplasmic transport of MR to the nucleus. Replacement of this hsp90-binding IMM(More)
p53 is a crucial transcription factor with tumor suppressive properties that elicits its function through specific target genes. It constitutes a pivotal system that integrates information received by many signaling pathways and subsequently orchestrates cell fate decisions, namely, growth-arrest, senescence, or apoptosis. Reactive oxygen species (ROS)(More)
Tumor growth mainly depend on formation of new blood vessels. DFMO (alpha-difluoromethylornithine), an inhibitor of polyamine biosynthesis, inhibits tumor growth in many animal tumors. Our investigation was to evaluate the requirement of polyamines for induction of angiogenesis by tumor cells and spleen lymphocytes from tumor-bearing mice. In this regard,(More)
GTSE-1 (G2 and S phase-expressed-1) protein is specifically expressed during S and G2 phases of the cell cycle. It is mainly localized to the microtubules and when overexpressed delays the G2 to M transition. Here we report that human GTSE-1 (hGTSE-1) protein can negatively regulate p53 transactivation function, protein levels, and p53-dependent apoptosis.(More)
hGTSE-1 (human G(2) and S phase-expressed-1) is a cell cycle-regulated protein mainly localized in the cytoplasm and apparently associated with the microtubules. hGTSE-1 is able to down-regulate levels and activity of the p53 tumor suppressor protein: it binds the C-terminal region of p53 and represses its ability to induce apoptosis after DNA damage. Here(More)
T-lymphocytes from tumour-bearing mice are able to trigger the angiogenic cascade. Since it is known that tumour growth produces reactive oxygen species (ROS), the aim of this study was to evaluate the role of hydrogen peroxide (H2O2) on the activation of lymphocytes and their induction of this vascular response. Studies on lymphocytes, stimulated in vitro(More)