Learn More
The performance of a diagnostic microarray (the MChip assay) for influenza was compared in a blind study to that of viral culture, reverse transcription (RT)-PCR, and the QuickVue Influenza A+B test. The patient sample data set was composed of 102 respiratory secretion specimens collected between 29 December 2005 and 2 February 2006 at Scott & White(More)
An important consideration in microarray analysis of nucleic acids is the efficiency with which the target molecule is captured by, or hybridized to, surface-immobilized oligos. For RNA, secondary and tertiary structure of the target strand can significantly decrease capture efficiency. To overcome this limitation, RNA is often fragmented to reduce(More)
Global surveillance of influenza is critical for improvements in disease management and is especially important for early detection, rapid intervention, and a possible reduction of the impact of an influenza pandemic. Enhanced surveillance requires rapid, robust, and inexpensive analytical techniques capable of providing a detailed analysis of influenza(More)
DNA microarrays have proven to be powerful tools for gene expression analyses and are becoming increasingly attractive for diagnostic applications, e.g., for virus identification and subtyping. The selection of appropriate sequences for use on a microarray poses a challenge, particularly for highly mutable organisms such as influenza viruses, human(More)
The importance of global influenza surveillance using simple and rapid diagnostics has been frequently highlighted. For influenza type B, the need exists for discrimination between the two currently circulating major lineages, represented by virus strains B/Victoria/2/87 and B/Yamagata/16/88, as only one of these lineages is represented in seasonal(More)
The design and characterization of a low-density microarray for subtyping influenza A is presented. The microarray consisted of 15 distinct oligonucleotides designed to target only the matrix gene segment of influenza A. An artificial neural network was utilized to automate microarray image interpretation. The neural network was trained to recognize(More)
In previous work, a simple diagnostic DNA microarray that targeted only the matrix gene segment of influenza A (MChip) was developed and evaluated with patient samples. In this work, the analytical utility of the MChip for detection and subtyping of an emerging virus was evaluated with a diverse set of A/H5N1 influenza viruses. A total of 43 different(More)
SUMMARY ConFind (conserved region finder) identifies regions of conservation in multiple sequence alignments that can serve as diagnostic targets. Designed to work with a large number of closely related, highly variable sequences, ConFind provides robust handling of alignments containing partial sequences and ambiguous characters. Conserved regions are(More)
The classical approach of high-content screening (HCS) is based on multiplexed, functional cell-based screening and combines several analytical technologies that have been used before separately to achieve a better level of automation (scale-up) and higher throughput. New HCS methods will help to overcome the bottlenecks, e.g. in the present development(More)
This paper describes the design, characterization, and use of an optical biosensor suited for the process control of biotechnological processes. The detector principle is based on reflectometric interference spectroscopy (RIfS). RIfS enables a label-free, product-specific monitoring, with a future outline for on-line process control. The potential of the(More)