Martin Lauritzen

Learn More
Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now recognized that neurotransmitter-mediated signalling has a key(More)
1. Mechanisms of activity-dependent increases in cerebral blood flow (CBF) were examined in rat cerebellar cortex using the laser Doppler flow technique and extracellular recordings of single unit activity and field potentials. 2. Stimulation of the monosynaptic climbing fibre system evoked long-lasting complex spikes in Purkinje cells, and extracellular(More)
The characteristic form and development of sensory disturbances during migraine auras suggests that the underlying mechanism is a disturbance of the cerebral cortex, probably the cortical spreading depression (CSD) of Leão. The demonstration of unique changes of brain blood flow during attacks of migraine with aura, which have been replicated in animal(More)
The coupling of electrical activity in the brain to changes in cerebral blood flow (CBF) is of interest because hemodynamic changes are used to track brain function. Recent studies, especially those investigating the cerebellar cortex, have shown that the spike rate in the principal target cell of a brain region (i.e. the efferent cell) does not affect(More)
Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke(More)
Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence to suggest that CSD is involved in the mechanism of migraine,(More)
A key goal in functional neuroimaging is to use signals that are related to local changes in metabolism and blood flow to track the neuronal correlates of mental activity. Recent findings indicate that the dendritic processing of excitatory synaptic inputs correlates more closely than the generation of spikes with brain imaging signals. The correlation is(More)
1. Electrical stimulation of the infraorbital nerve was used to examine the coupling between neuronal activity and cerebral blood flow (CBF) in rat somatosensory cortex by laser Doppler flowmetry and extracellular recordings of field potentials. 2. The relationship between field potential (FP) and CBF amplitudes was examined as a function of the stimulus(More)
Progressive ischaemic damage in animals is associated with spreading mass depolarizations of neurons and astrocytes, detected as spreading negative slow voltage variations. Speculation on whether spreading depolarizations occur in human ischaemic stroke has continued for the past 60 years. Therefore, we performed a prospective multicentre study assessing(More)
Functional neuroimaging relies on the robust coupling between neuronal activity, metabolism and cerebral blood flow (CBF), but the physiological basis of the neuroimaging signals is still poorly understood. We examined the mechanisms of activity-dependent changes in tissue oxygenation in relation to variations in CBF responses and postsynaptic activity in(More)