Martin L. Privalsky

Learn More
We report here the identification of a novel cofactor, ACTR, that directly binds nuclear receptors and stimulates their transcriptional activities in a hormone-dependent fashion. ACTR also recruits two other nuclear factors, CBP and P/CAF, and thus plays a central role in creating a multisubunit coactivator complex. In addition, and unexpectedly, we show(More)
Many eukaryotic transcription factors are bimodal in their regulatory properties and can both repress and activate expression of their target genes. These divergent transcriptional properties are conferred through recruitment of auxiliary proteins, denoted coactivators and corepressors. Repression plays a particularly critical role in the functions of the(More)
Nuclear receptors (also known as nuclear hormone receptors) are hormone-regulated transcription factors that control many important physiological and developmental processes in animals and humans. Defects in receptor function result in disease. The diverse biological roles of these receptors reflect their surprisingly versatile transcriptional properties,(More)
The SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) corepressor participates in the repression of target gene expression by a variety of transcription factors, including the nuclear hormone receptors, promyelocytic leukemia zinc finger protein, and B-cell leukemia protein 6. The ability of SMRT to associate with these transcription(More)
The v-erbA oncoprotein of avian erythroblastosis virus is an aberrant version of a thyroid hormone receptor and functions in neoplasia by blocking erythroid differentiation and by modifying the growth properties of fibroblasts. v-erbA has been proposed to represent a novel dominant negative oncogene, acting in the cancer cell by interfering with the actions(More)
Retinoic acid receptors (RARs) are hormone-regulated transcription factors that control key aspects of normal differentiation. Aberrant RAR activity may be a causal factor in neoplasia. Human acute promyelocytic leukemia, for example, is tightly linked to chromosomal translocations that fuse novel amino acid sequences (denoted PML, PLZF, and NPM) to the(More)
Nuclear hormone receptors are hormone-regulated transcription factors that play critical roles in chordate development and homeostasis. Aberrant nuclear hormone receptors have been implicated as causal agents in a number of endocrine and neoplastic diseases. The syndrome of Resistance to Thyroid Hormone (RTH) is a human genetic disease characterized by an(More)
The promyelocytic leukemia (PML) protein is a potent growth suppressor and proapototic factor, whereas aberrant fusions of PML and retinoic acid receptor (RAR)-alpha are causal agents in human acute promyelocytic leukemia. Arsenic trioxide (As(2)O(3)) treatment induces apoptosis in acute promyelocytic leukemia cells through an incompletely understood(More)
Many neuronal processes require gene activation by synaptically evoked Ca(2+) transients. Ca(2+)-dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be(More)
Nuclear receptors are ligand-regulated transcription factors that regulate key aspects of metazoan development, differentiation, and homeostasis. Nuclear receptors recognize target genes by binding to specific DNA recognition sequences, denoted hormone response elements (HREs). Many nuclear receptors can recognize HREs as either homodimers or heterodimers.(More)