Martin L. Demaine

Learn More
We introduce staged self-assembly of Wang tiles, where tiles can be added dynamically in sequence and where intermediate constructions can be stored for later mixing. This model and its various constraints and performance measures are motivated by a practical nanofabrication scenario through protein-based bioengineering. Staging allows us to break through(More)
We introduce the problem of <i>shape replication</i> in the Wang tile self-assembly model. Given an input shape, we consider the problem of designing a self-assembly system which will replicate that shape into either a specific number of copies, or an unbounded number of copies. Motivated by practical DNA implementations of Wang tiles, we consider a model(More)
We study the difference between the standard seeded model of tile self-assembly, and the “seedless” two-handed model of tile self-assembly. Most of our results suggest that the two-handed model is more powerful. In particular, we show how to simulate any seeded system with a two-handed system that is essentially just a constant factor larger. We exhibit(More)
We explore the following problem: given a collection of creases on a piece of paper, each assigned a folding direction of mountain or valley, is there a flat folding by a sequence of simple folds? There are several models of simple folds; the simplest one-layer simple fold rotates a portion of paper about a crease in the paper by ±180◦. We first consider(More)
We study a popular puzzle game known variously as Clickomania and Same Game. Basically, a rectangular grid of blocks is initially colored with some number of colors, and the player repeatedly removes a chosen connected monochromatic group of at least two square blocks, and any blocks above it fall down. We show that one-column puzzles can be solved, i.e.,(More)
Clobber is a new two-player board game. In this paper, we introduce the 1-player variant Solitaire Clobber where the goal is to remove as many stones as possible from the board by alternating white and black moves. We show that a checkerboard configuration on a single row (or single column) can be reduced to about n/4 stones. For boards with at least two(More)