Learn More
BACKGROUND The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance(More)
An early warning system for West Nile virus (WNV) outbreaks could provide a basis for targeted public education and surveillance activities as well as more timely larval and adult mosquito control. We adapted the spatial scan statistic for prospective detection of infectious disease outbreaks, applied the results to data on dead birds reported from New York(More)
Background: Many different test statistics have been proposed to test for spatial clustering. Some of these statistics have been widely used in various applications. In this paper, we use an existing collection of 1,220,000 simulated benchmark data, generated under 51 different clustering models, to compare the statistical power of several disease(More)
The objective of this report is to provide a basis to inform decisions about priorities for developing statistical research initiatives in the field of public health surveillance for emerging threats. Rapid information system advances have created a vast opportunity of secondary data sources for information to enhance the situational and health status(More)
Background: Spatial variation in patterns of disease outcomes is often explored with techniques such as cluster detection analysis. In other types of investigations, geographically varying individual or community level characteristics are often used as independent predictors in statistical models which also attempt to explain variation in disease outcomes.(More)
BACKGROUND Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In(More)
Temporal, spatial and space-time scan statistics are commonly used to detect and evaluate the statistical significance of temporal and/or geographical disease clusters, without any prior assumptions on the location, time period or size of those clusters. Scan statistics are mostly used for count data, such as disease incidence or mortality. Sometimes there(More)
Background: The aims of this study were to determine whether observed geographic variations in breast cancer incidence are random or statistically significant, whether statistically significant excesses are temporary or time-persistent, and whether they can be explained by covariates such as socioeconomic status (SES) or urban/rural status?