Learn More
Dopamine is an important transmitter in the CNS and PNS, critically regulating numerous neuropsychiatric and physiological functions. These actions of dopamine are mediated by five distinct receptor subtypes. Of these receptors, probably the least understood in terms of physiological functions is the D5 receptor subtype. To better understand the role of the(More)
Prostaglandins participate in the regulation of important glomerular functions and are involved in the pathogenesis of glomerular diseases. This study investigates the influence of prostaglandins on membrane voltage, ion conductances, cAMP accumulation, and cytosolic calcium activity ([Ca2+]i) in differentiated podocytes. Prostaglandin E2 (PGE2) caused a(More)
Increased formation of prostaglandin E2 (PGE2) is a key part of hyperprostaglandin E syndrome/antenatal Bartter syndrome (HPS/aBS), a renal disease characterized by NaCl wasting, water loss, and hyperreninism. Inhibition of PGE2 formation by cyclo-oxygenase inhibitors significantly lowers patient mortality and morbidity. However, the pathogenic role of PGE2(More)
Experimental and clinical studies impressively demonstrate that angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) significantly reduce proteinuria and retard progression of glomerular disease. The underlying intraglomerular mechanisms are not yet fully elucidated. As podocyte injury constitutes a critical step in the(More)
There is increased awareness of the role of dopamine in cardiovascular function, renal function and systemic blood pressure regulation. Growing evidence indicates that each of the five dopamine receptor subtypes participates in the regulation of blood pressure by mechanisms distinct for that particular subtype. Some dopamine receptors regulate blood(More)
Podocytes are the most differentiated cell types in the glomerulus, which have been assumed to participate in the regulation of the ultrafiltration coefficient K(f). In podocytes in vivo and in vitro vasoactive agonists, such as angiotensin II and acetylcholine, increase the free cytosolic Ca(2+) concentration via a release of Ca(2+) from intracellular(More)
Renal dopamine receptors have been shown to play a critical role in ROS-dependent hypertension. D5 dopamine receptor deficient (D5-/-) mice are hypertensive and have increased systemic oxidative stress which is manifested in the kidney and the brain. To further investigate the underlying mechanisms of hypertension in D5-/- mice, we used RNA arrays to(More)
The CXCR3 chemokine receptor, a member of the CXCR family, has been linked to a pathological role in autoimmune disease, inflammatory disease, allograft rejection, and ischemia. In the kidney, expression of the CXCR3 receptor and its ligands is up-regulated in states of glomerulonephritis and in allograft rejection, but little is known about the expression(More)
Podocyte injury is a central mechanism in the pathogenesis of proteinuria. Prostaglandin E2 (PGE2) has been suggested to protect podocytes from cellular injury. Here we investigated whether PGE2-induced gene expression accounts for the protective role of PGE2 in podocytes. Using a suppressive-subtractive hybridization method, we isolated a differentially(More)
BACKGROUND Adenylyl cyclases (ACs) are a family of enzymes that catalyze the formation of the second-messenger cyclic adenosine 3',5'-monophosphate (cAMP). At least nine isoforms of AC have been cloned. These isoforms differ in their tissue distribution and basal activity. AC isoforms also differ in their capacity to be stimulated or inhibited by G protein(More)