Martin J. Wainwright

Learn More
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory,(More)
Distributed storage systems provide reliable access to data through redundancy spread over individually unreliable nodes. Application scenarios include data centers, peer-to-peer storage systems, and storage in wireless networks. Storing data using an erasure code, in fragments spread across nodes, requires less redundancy than simple replication for the(More)
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter(More)
The goal of decentralized optimization over a network is to optimize a global objective formed by a sum of local (possibly nonsmooth) convex functions using only local computation and communication. It arises in various application domains, including distributed tracking and localization, multiagent co-ordination, estimation in sensor networks, and(More)
We consider the problem of estimating the graph associated with a binary Ising Markov random field. We describe a method based on 1-regularized logistic regression, in which the neighborhood of any given node is estimated by performing logistic regression subject to an 1-constraint. The method is analyzed under high-dimensional scaling in which both the(More)
High-dimensional statistical inference deals with models in which the the number of parameters p is comparable to or larger than the sample size n. Since it is usually impossible to obtain consistent procedures unless p/n → 0, a line of recent work has studied models with various types of low-dimensional structure, including sparse vectors, sparse and(More)
The problem of consistently estimating the sparsity pattern of a vector based on observations contaminated by noise arises in various contexts, including signal denoising, sparse approximation, compressed sensing, and model selection. We analyze the behavior of -constrained quadratic programming (QP), also referred to as the Lasso, for recovering the(More)
Working under local differential privacy-a model of privacy in which data remains private even from the statistician or learner-we study the tradeoff between privacy guarantees and the utility of the resulting statistical estimators. We prove bounds on information-theoretic quantities, including mutual information and Kullback-Leibler divergence, that(More)
We study an instance of high-dimensional inference in which the goal is to estimate a matrix Θ ∈ R12 on the basis of N noisy observations. The unknown matrix Θ is assumed to be either exactly low rank, or “near” low-rank, meaning that it can be wellapproximated by a matrix with low rank. We consider a standard M -estimator based on regularization by the(More)
We study two communication-efficient algorithms for distributed statistical optimization on large-scale data. The first algorithm is an averaging method that distributes the N data samples evenly to m machines, performs separate minimization on each subset, and then averages the estimates. We provide a sharp analysis of this average mixture algorithm,(More)