#### Filter Results:

- Full text PDF available (236)

#### Publication Year

1996

2017

- This year (12)
- Last 5 years (93)
- Last 10 years (181)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Brain Region

#### Cell Type

#### Data Set Used

#### Key Phrases

Learn More

- Martin J. Wainwright, Michael I. Jordan
- Foundations and Trends in Machine Learning
- 2008

- Javier Portilla, Vasily Strela, Martin J. Wainwright, Eero P. Simoncelli
- IEEE Trans. Image Processing
- 2003

We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter… (More)

- Alexandros G. Dimakis, Brighten Godfrey, Yunnan Wu, Martin J. Wainwright, Kannan Ramchandran
- IEEE Transactions on Information Theory
- 2007

Distributed storage systems provide reliable access to data through redundancy spread over individually unreliable nodes. Application scenarios include data centers, peer-to-peer storage systems, and storage in wireless networks. Storing data using an erasure code, in fragments spread across nodes, requires less redundancy than simple replication for the… (More)

- Martin J. Wainwright, Eero P. Simoncelli
- NIPS
- 1999

The statistics of photographic images, when represented using multiscale (wavelet) bases, exhibit two striking types of non-Gaussian behavior. First, the marginal densities of the coefficients have extended heavy tails. Second, the joint densities exhibit variance dependencies not captured by second-order models. We examine properties of the class of… (More)

- Martin J. Wainwright
- Vision Research
- 1999

We propose that visual adaptation in orientation, spatial frequency, and motion can be understood from the perspective of optimal information transmission. The essence of the proposal is that neural response properties at the system level should be adjusted to the changing statistics of the input so as to maximize information transmission. We show that this… (More)

We consider the problem of estimating the graph associated with a binary Ising Markov random field. We describe a method based on ℓ1-regularized logistic regression, in which the neighborhood of any given node is estimated by performing logistic regression subject to an ℓ1-constraint. The method is analyzed under high-dimensional scaling, in which both the… (More)

- Jon Feldman, Martin J. Wainwright, David R. Karger
- IEEE Transactions on Information Theory
- 2005

A new method is given for performing approximate maximum-likelihood (ML) decoding of an arbitrary binary linear code based on observations received from any discrete memoryless symmetric channel. The decoding algorithm is based on a linear programming (LP) relaxation that is defined by a factor graph or parity-check representation of the code. The resulting… (More)

High-dimensional statistical inference deals with models in which the the number of parameters p is comparable to or larger than the sample size n. Since it is usually impossible to obtain consistent procedures unless p/n → 0, a line of recent work has studied models with various types of low-dimensional structure, including sparse vectors, sparse and… (More)

- John C. Duchi, Alekh Agarwal, Martin J. Wainwright
- IEEE Trans. Automat. Contr.
- 2012

—The goal of decentralized optimization over a network is to optimize a global objective formed by a sum of local (possibly nonsmooth) convex functions using only local computation and communication. It arises in various application domains, including distributed tracking and localization, multi-agent coordination , estimation in sensor networks, and… (More)

- Martin J. Wainwright, Tommi S. Jaakkola, Alan S. Willsky
- IEEE Transactions on Information Theory
- 2002

We introduce a new class of upper bounds on the log partition function of a Markov random field (MRF). This quantity plays an important role in various contexts, including approximating marginal distributions, parameter estimation, combinatorial enumeration, statistical decision theory, and large-deviations bounds. Our derivation is based on concepts from… (More)