Martin J. Pearson

Learn More
Contact type dependency of texture classification in a whiskered mobile robot. Autonomous Robots manuscript No. Abstract Actuated artificial whiskers modeled on rat macrovibrissae can provide effective tactile sensor systems for autonomous robots. This article focuses on texture classification using artificial whiskers and addresses a limitation of previous(More)
In this paper, we present two versions of a hardware processing architecture for modeling large networks of leaky-integrate-and-flre (LIF) neurons; the second version provides performance enhancing features relative to the first. Both versions of the architecture use fixed-point arithmetic and have been implemented using a single field-programmable gate(More)
In whiskered animals, activity is evoked in the primary sensory afferent cells (trigeminal nerve) by mechanical stimulation of the whiskers. In some cell populations this activity is correlated well with continuous stimulus parameters such as whisker deflection magnitude, but in others it is observed to represent events such as whisker-stimulator contact or(More)
The Whiskerbot project is a collaborative project between robotics engineers, computational neurosci-entists and ethologists, aiming to build a biologically inspired robotic implementation of the rodent whisker sensory system. The morphology and mechanics of the large whiskers (macro-vibrissae) have been modeled, as have the neural structures that(More)
The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory(More)
We recommend you cite the published version. Disclaimer UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of(More)
We recommend you cite the published version. Disclaimer UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of(More)
The rat has a sophisticated tactile sensory system centred around the facial whiskers. During normal behaviour, rats sweep their longer whiskers (macrovibrissae) through the environment to obtain large-scale information, whilst gathering small-scale information with the sensory apparatus around their snout. The macrovibrissae are actively and differentially(More)
Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two(More)