Learn More
In this paper, we present two versions of a hardware processing architecture for modeling large networks of leaky-integrate-and-flre (LIF) neurons; the second version provides performance enhancing features relative to the first. Both versions of the architecture use fixed-point arithmetic and have been implemented using a single field-programmable gate(More)
In whiskered animals, activity is evoked in the primary sensory afferent cells (trigeminal nerve) by mechanical stimulation of the whiskers. In some cell populations this activity is correlated well with continuous stimulus parameters such as whisker deflection magnitude, but in others it is observed to represent events such as whisker-stimulator contact or(More)
Contact type dependency of texture classification in a whiskered mobile robot. Autonomous Robots manuscript No. Abstract Actuated artificial whiskers modeled on rat macrovibrissae can provide effective tactile sensor systems for autonomous robots. This article focuses on texture classification using artificial whiskers and addresses a limitation of previous(More)
The Whiskerbot project is a collaborative project between robotics engineers, computational neurosci-entists and ethologists, aiming to build a biologically inspired robotic implementation of the rodent whisker sensory system. The morphology and mechanics of the large whiskers (macro-vibrissae) have been modeled, as have the neural structures that(More)
We recommend you cite the published version. Disclaimer UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of(More)
Whiskered mammals such as rats are experts in tactile perception. By actively palpating surfaces with their whiskers, rats and mice are capable of acute texture discrimination and shape perception. We present a novel system for investigating whisker-object contacts repeatably and reliably. Using an XY positioning robot and a biomimetic artificial whisker we(More)
We recommend you cite the published version. Disclaimer UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of(More)
The implementation of a tactile sensory system for neuromorphic signal processing applications is presented. It has been developed by modelling the structure and behaviour of real rodent facial vibrissae. The primary afferents have been modelled using empirical data taken from electrophysiological measurements, and implemented in real time using hardware(More)