Martin J. How

Learn More
Figure 1. High-resolution polarisation vision in Sepia plangon improves image contrast. (A) S. plangon responded to looming stimuli that differed in angle of polarisation from the background with an innate deimatic diplay (brightening of body colour). Left portion = pre-stimulus; right portion = post stimulus. (B) Normalized response strength (see(More)
One of the most complex eyes in the animal kingdom can be found in species of stomatopod crustaceans (mantis shrimp), some of which have 12 different photoreceptor types, each sampling a narrow set of wavelengths ranging from deep ultraviolet to far red (300 to 720 nanometers). Functionally, this chromatic complexity has presented a mystery. Why use 12(More)
It might seem obvious that a camouflaged animal must generally match its background whereas to be conspicuous an organism must differ from the background. However, the image parameters (or statistics) that evaluate the conspicuousness of patterns and textures are seldom well defined, and animal coloration patterns are rarely compared quantitatively with(More)
To respond appropriately to communication signals, animals must have the ability to decipher signal meaning. At a basic level, interpreting the difference between territorial and courtship signals can be vital for the survival and reproduction of social animals. Male and female fiddler crabs communicate with claw-waving displays, but the function of these(More)
Some vertebrate species have evolved means of extending their visual sensitivity beyond the range of human vision. One mechanism of enhancing sensitivity to long-wavelength light is to replace the 11-cis retinal chromophore in photopigments with 11-cis 3,4-didehydroretinal. Despite over a century of research on this topic, the enzymatic basis of this(More)
The discrimination of polarized light is widespread in the natural world. Its use for specific, large-field tasks, such as navigation and the detection of water bodies, has been well documented. Some species of cephalopod and crustacean have polarization receptors distributed across the whole visual field and are thought to use polarized light cues for(More)
Polarisation vision is used by a variety of species in many important tasks, including navigation and orientation (e.g. desert ant), communication and signalling (e.g. stomatopod crustaceans), and as a possible substitute for colour vision (e.g. cephalopod molluscs). Fiddler crabs are thought to possess the anatomical structures necessary to detect(More)
Fiddler crabs use elaborate, species-specific claw-waving displays to communicate with rivals and mates. However, detailed comparative studies of fiddler crab signal structure and structural variations are lacking. This paper provides an analysis of the claw-waving displays of seven Australian species of fiddler crab, Uca mjoebergi, U. perplexa, U. polita,(More)
The polarisation of light is used by many species of cephalopods and crustaceans to discriminate objects or to communicate. Most visual systems with this ability, such as that of the fiddler crab, include receptors with photopigments that are oriented horizontally and vertically relative to the outside world. Photoreceptors in such an orthogonal array are(More)