Martin Hollmann

Learn More
We have determined the gene structure for the NMDA receptor subunit gene NMDAR1. We found eight splice variants that arise from different combinations of a single 5' terminal exon insertion and three different 3' terminal exon deletions, relative to NMDAR1. We analyzed the modulation by Zn2+ of currents through homomeric receptors assembled from these(More)
NMDA (N-methyl-D-aspartate) receptors and non-NMDA receptors represent the two major classes of ion channel-linked glutamate receptors. Unlike the NMDA receptor channels, non-NMDA receptor channels have usually been thought to conduct monovalent cations only. Non-NMDA receptor ion channels that can be gated by kainic acid (KA) and(More)
Three closely related genes, GluR1, GluR2, and GluR3, encode receptor subunits for the excitatory neurotransmitter glutamate. The proteins encoded by the individual genes form homomeric ion channels in Xenopus oocytes that are sensitive to glutamatergic agonists such as kainate and quisqualate but not to N-methyl-D-aspartate, indicating that binding sites(More)
We have isolated cDNAs encoding a glutamate receptor subunit, designated GluR5, displaying 40%-41% amino acid identity with the kainate/AMPA receptor subunits GluR1, GluR2, GluR3, and GluR4. This level of sequence similarity is significantly below the approximately 70% intersubunit identity characteristic of kainate/AMPA receptors. The GluR5 protein forms(More)
Extracellular ATP exerts pronounced biological actions in virtually every organ or tissue that has been studied. In the central and peripheral nervous system, ATP acts as a fast excitatory transmitter in certain synaptic pathways [Evans, R.J., Derkach, V. & Surprenant, A. (1992) Nature (London) 357, 503-505; Edwards, F.A., Gigg, A.J. & Colquhoun, D. (1992)(More)
We have isolated a complementary DNA clone by screening a rat brain cDNA library for expression of kainate-gated ion channels in Xenopus oocytes. The cDNA encodes a single protein of relative molecular mass (Mr) 99,800 which on expression in oocytes forms a functional ion channel possessing the electrophysiological and pharmacological properties of the(More)
We investigated the transmembrane topology of the glutamate receptor GluR1 by introducing N-glycosylation sites as reporter sites for an extracellular location of the respective site. Our data show that the N-terminus is extracellular, whereas the C-terminus is intracellular. Most importantly, we found only three transmembrane domains (designated TMD A, TMD(More)
Joro spider toxin (JSTX) is one of the most potent antagonists of glutamatergic AMPA/KA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate) receptor channels in invertebrates and vertebrates. A differential blocking effect on certain types of glutamatergic synapses--e.g., parallel and climbing fiber synaptic inputs to rat cerebellar Purkinje(More)
AMPA receptors (AMPARs) mediate the majority of fast synaptic transmission in the CNS of vertebrates. They are believed to be associated with members of the transmembrane AMPA receptor regulatory protein (TARP) family. TARPs mediate the delivery of AMPA receptors to the plasma membrane and mediate their synaptic trafficking. Moreover, TARPs modulate(More)